The user’s experience with a recommender system is significantly shaped by the dynamics of user-algorithm interactions. These interactions are often evaluated using interaction qualities, such as controllability, trust, and autonomy, to gauge their impact. As part of our effort to systematically categorize these evaluations, we explored the suitability of the interaction qualities framework as proposed by Lenz, Dieffenbach and Hassenzahl. During this examination, we uncovered four challenges within the framework itself, and an additional external challenge. In studies examining the interaction between user control options and interaction qualities, interdependencies between concepts, inconsistent terminology, and the entity perspective (is it a user’s trust or a system’s trustworthiness) often hinder a systematic inventory of the findings. Additionally, our discussion underscored the crucial role of the decision context in evaluating the relation of algorithmic affordances and interaction qualities. We propose dimensions of decision contexts (such as ‘reversibility of the decision’, or ‘time pressure’). They could aid in establishing a systematic three-way relationship between context attributes, attributes of user control mechanisms, and experiential goals, and as such they warrant further research. In sum, while the interaction qualities framework serves as a foundational structure for organizing research on evaluating the impact of algorithmic affordances, challenges related to interdependencies and context-specific influences remain. These challenges necessitate further investigation and subsequent refinement and expansion of the framework.
LINK
B4B is a multi-year, multi-stakeholder project focused on developing methods to harness big data from smart meters, building management systems and the Internet of Things devices, to reduce energy consumption, increase comfort, respond flexibly to user behaviour and local energy supply and demand, and save on installation maintenance costs. This will be done through the development of faster and more efficient Machine Learning and Artificial Intelligence models and algorithms. The project is geared to existing utility buildings such as commercial and institutional buildings.
Void street interfaces (VSIs) – building plinths with restricted visual interaction, accessibility, and public use – constitute an urban feature often associated with undermining the public domain, limiting free access and preventing interaction between social groups. Moreover, VSIs have been described as products of inequality designed to segregate and hinder integration between public and private urban spaces. This study assesses VSIs across six cities in Brazil, a country notable for its profound inequality and sociospatial fragmentation. The main aims of this research are: (i) to develop and test a predictive model for VSIs using socioeconomic indicators drawn from open-source ground-truth data; (ii) to identify the variance of VSI within selected case studies. In the development phase of the predictive model, data from the city of Recife are used to build the model. The testing phase involves the analysis of VSIs in the cities of Fortaleza, Salvador, Belo Horizonte, Curitiba and Porto Alegre. The model can potentially assist urban planners in better understanding and locating VSIs and mitigating undesirable outcomes.
MULTIFILE
De maatschappelijke discussies over de invloed van AI op ons leven tieren welig. De terugkerende vraag is of AI-toepassingen – en dan vooral recommendersystemen – een dreiging of een redding zijn. De impact van het kiezen van een film voor vanavond, met behulp van Netflix' recommendersysteem, is nog beperkt. De impact van datingsites, navigatiesystemen en sociale media – allemaal systemen die met algoritmes informatie filteren of keuzes aanraden – is al groter. De impact van recommendersystemen in bijvoorbeeld de zorg, bij werving en selectie, fraudedetectie, en beoordelingen van hypotheekaanvragen is enorm, zowel op individueel als op maatschappelijk niveau. Het is daarom urgent dat juist recommendersystemen volgens de waarden van Responsible AI ontworpen worden: veilig, eerlijk, betrouwbaar, inclusief, transparant en controleerbaar.Om op een goede manier Responsible AI te ontwerpen moeten technische, contextuele én interactievraagstukken worden opgelost. Op het technische en maatschappelijke niveau is al veel vooruitgang geboekt, respectievelijk door onderzoek naar algoritmen die waarden als inclusiviteit in hun berekening meenemen, en door de ontwikkeling van wettelijke kaders. Over implementatie op interactieniveau bestaat daarentegen nog weinig concrete kennis. Bekend is dat gebruikers die interactiemogelijkheden hebben om een algoritme bij te sturen of aan te vullen, meer transparantie en betrouwbaarheid ervaren. Echter, slecht ontworpen interactiemogelijkheden, of een mismatch tussen interactie en context kosten juist tijd, veroorzaken mentale overbelasting, frustratie, en een gevoel van incompetentie. Ze verhullen eerder dan dat ze tot transparantie leiden.Het ontbreekt ontwerpers van interfaces (UX/UI designers) aan systematische concrete kennis over deze interactiemogelijkheden, hun toepasbaarheid, en de ethische grenzen. Dat beperkt hun mogelijkheid om op interactieniveau aan Responsible AI bij te dragen. Ze willen daarom graag een pattern library van interactiemogelijkheden, geannoteerd met onderzoek over de werking en inzetbaarheid. Dit bestaat nu niet en met dit project willen we een substantiële bijdrage leveren aan de ontwikkeling ervan.
A world where technology is ubiquitous and embedded in our daily lives is becoming increasingly likely. To prepare our students to live and work in such a future, we propose to turn Saxion’s Epy-Drost building into a living lab environment. This will entail setting up and drafting the proper infrastructure and agreements to collect people’s location and building data (e.g. temperature, humidity) in Epy-Drost, and making the data appropriately available to student and research projects within Saxion. With regards to this project’s effect on education, we envision the proposal of several derived student projects which will provide students the opportunity to work with huge amounts of data and state-of-the-art natural interaction interfaces. Through these projects, students will acquire skills and knowledge that are necessary in the current and future labor-market, as well as get experience in working with topics of great importance now and in the near future. This is not only aligned with the Creative Media and Game Technologies (CMGT) study program’s new vision and focus on interactive technology, but also with many other education programs within Saxion. In terms of research, the candidate Postdoc will study if and how the data, together with the building’s infrastructure, can be leveraged to promote healthy behavior through playful strategies. In other words, whether we can persuade people in the building to be more physically active and engage more in social interactions through data-based gamification and building actuation. This fits very well with the Ambient Intelligence (AmI) research group’s agenda in Augmented Interaction, and CMGT’s User Experience line. Overall, this project will help spark and solidify lasting collaboration links between AmI and CMGT, give body to AmI’s new Augmented Interaction line, and increase Saxion’s level of education through the dissemination of knowledge between researchers, teachers and students.