Air transportation has grown in an unexpected way during last decades and is expected to increase even more in the next years. Traffic growth tendencies forecast an expansion in the demand and greater aviation connectivity, but also higher workload to the different airspace users, especially for airport and services. Therefore, it is essential to employ strategies designed to use efficiently valuable corporate resource. Airport authorities around the world are investing in large capital projects, including new or improved runways, terminal expansions, and entirely new airports. However, this effort is sometimes limited due to their geographic location. In this work, two main objectives are pursued: first, to highlight the importance of the industry by exposing the current situation and future trends all over the world focusing in the Mexican industry; and second, to introduce a simulation model which can be used as a decision making tool for the upcoming demand. The analysis of the scenarios illustrates how to develop strategies to cope with the different airspace user's needs.
MULTIFILE
The rapidly evolving aviation environment, driven by the Fourth Industrial Revolution, encompasses smart operations, communication technology, and automation. Airports are increasingly developing new autonomous innovation strategies to meet sustainability goals and address future challenges, such as shifting labor markets, working conditions, and digitalization (ACI World, 2019). This paper explores high-level governance strategies, a benchmarking study, that facilitates this transition. It aims to identify the key characteristics and features of the benchmarking study applicable to the development of autonomous airside operations. It also examines areas for improvement in operations, focusing on Key Performance Areas (KPAs) and strategic objectives related to airside automation. The findings highlight several essential performance areas and formulate it to a tailored benchmarking study that airports or aviation stakeholders can adopt to develop automation in airside operations. These criteria and features are summarized into a benchmarking framework that reflects strategy objectives. This paper contributes a valuable benchmarking methodology, supporting the growing global aviation demand for improvements toward more sustainable and smart autonomous airside operations. This outcome motivates aviation stakeholders to innovate to meet environmental and social sustainability goals.
Recent years have seen a global rise in the failure of tailings dams. Studies investigating the causes of slope failure often recognise high intensity rainfall events to significantly contribute to liquefaction, erosion and overtopping. This study aims to investigate the influence of alternative physical and geohydrological processes that, under tension saturation conditions, contribute to slope instability in tailings dams. It has been suggested that the generation of transient pressure wave mechanisms by high intensity rainfall events, surface ponding and wetting front advancement result in the formation of an induced pressure head that triggers the mobilization of pre-event water. In order to quantify these physical processes, this study included the analysis of rapid transmission conditions in a silica fines mix, with similar physical and hydraulic characteristics as platinum tailings. A tall leak-proof soil column, containing the soil sample compacted to in-situ dry bulk density, was fitted with seven observation ports. Each port consisted of a pore air pressure probe, a mini tensiometer and a time domain reflectometry probe. After set-up and initial stabilisation, three separate artificial high intensity rainfall events were applied to the surface. Monitoring of hydraulic state variables was recorded at thirty second intervals by automatic logging, thereby enabling the analysis of measured outcomes. Observations showed instant spikes in pore air pressure ahead of the wetting front, as well as a number of delayed responses. The interpretation of lab results led to the conclusion that pressure diffusion mechanisms throughout the porous medium, could result in the rapid release and mobilisation of previously stagnant antecedent moisture, thereby enabling phreatic levels to rising rapidly and in excess to the amount of surface infiltration. Also, since an increase in pore water pressure is likely to cause a reduction in shear strength, it is suggested that these physical and geohydrological processes could have an adverse impact on the stability of tailings dams.
MULTIFILE