During times of high activity by predators and competitors, herbivores may be forced to forage in patches of low‐quality food. However, the relative importance in determining where and what herbivores forage still remains unclear, especially for small‐ and intermediate‐sized herbivores. Our objective was to test the relative importance of predator and competitor activity, and forage quality and quantity on the proportion of time spent in a vegetation type and the proportion of time spent foraging by the intermediate‐sized herbivore European hare (Lepus europaeus). We studied red fox (Vulpes vulpes) as a predator species and European rabbit (Oryctolagus cuniculus) as a competitor. We investigated the time spent at a location and foraging time of hare using GPS with accelerometers. Forage quality and quantity were analyzed based on hand‐plucked samples of a selection of the locally most important plant species in the diet of hare. Predator activity and competitor activity were investigated using a network of camera traps. Hares spent a higher proportion of time in vegetation types that contained a higher percentage of fibers (i.e., NDF). Besides, hares spent a higher proportion of time in vegetation types that contained relatively low food quantity and quality of forage (i.e., high percentage of fibers) during days that foxes (Vulpes vulpes) were more active. Also during days that rabbits (Oryctolagus cuniculus) were more active, hares spent a higher proportion of time foraging in vegetation types that contained a relatively low quality of forage. Although predation risk affected space use and foraging behavior, and competition affected foraging behavior, our study shows that food quality and quantity more strongly affected space use and foraging behavior than predation risk or competition. It seems that we need to reconsider the relative importance of the landscape of food in a world of fear and competition.
MULTIFILE
Control methods are applied worldwide to reduce predation on livestock by European red foxes (Vulpes vulpes). Lethal methods can inflict suffering; however, moral debate about their use is lacking. Non-lethal methods can also inflict suffering and can unintentionally lead to death, and yet both the welfare consequences and ethical perspectives regarding their use are rarely discussed. The aim of this study was to investigate the animal welfare consequences, the level of humaneness, the ethical considerations and the moral implications of the global use of fox control methods according to Tom Regan’s animal rights view and Peter Singer’s utilitarian view. According to Regan, foxes ought not to be controlled by either lethal or potentially harmful non-lethal methods because this violates the right of foxes not to be harmed or killed. According to Singer, if an action maximises happiness or the satisfaction of preferences over unhappiness or suffering, then the action is justified. Therefore, if and only if the use of fox control methods can prevent suffering and death in livestock in a manner that outweighs comparable suffering and death in foxes is one morally obligated t
MULTIFILE
Spatial variation in habitat riskiness has a major influence on the predator–prey space race. However, the outcome of this race can be modulated if prey shares enemies with fellow prey (i.e., another prey species). Sharing of natural enemies may result in apparent competition, and its implications for prey space use remain poorly studied. Our objective was to test how prey species spend time among habitats that differ in riskiness, and how shared predation modulates the space use by prey species. We studied a one‐predator, two‐prey system in a coastal dune landscape in the Netherlands with the European hare (Lepus europaeus) and European rabbit (Oryctolagus cuniculus) as sympatric prey species and red fox (Vulpes vulpes) as their main predator. The fine‐scale space use by each species was quantified using camera traps. We quantified residence time as an index of space use. Hares and rabbits spent time differently among habitats that differ in riskiness. Space use by predators and habitat riskiness affected space use by hares more strongly than space use by rabbits. Residence time of hare was shorter in habitats in which the predator was efficient in searching or capturing prey species. However, hares spent more time in edge habitat when foxes were present, even though foxes are considered ambush predators. Shared predation affected the predator–prey space race for hares positively, and more strongly than the predator–prey space race for rabbits, which were not affected. Shared predation reversed the predator–prey space race between foxes and hares, whereas shared predation possibly also released a negative association and promoted a positive association between our two sympatric prey species. Habitat riskiness, species presence, and prey species’ escape mode and foraging mode (i.e., central‐place vs. noncentral‐place forager) affected the prey space race under shared predation.
MULTIFILE