Technische Bedrijfskunde student Noud Pouwels heeft zijn afstudeeronderzoek uitgevoerd bij copier-multinational Xerox uit Venray. Hij heeft zich bezig gehouden met de internationale retourstromen van copiers aan het einde van hun levenscyclus of leasetermijn. Na veel onderzoek heeft hij een beslissingsboom ontwikkeld om te bepalen wat de beste verwerkingsmogelijkheden zijn: herontwikkeling, hergebruik of ontmanteling. Deze strategie levert Xerox veel geld op.
LINK
This text draws on a recent work experience at the WEEE recycling centre in Apeldoorn, the Netherlands, during which I wrote a series of auto-ethnographic texts. Through a performative of framing recycling work, I attempt to gain insight into the way we relate to the electronic waste we produce. I apply media-archaeological concepts to some of the work experiences I wrote about and address my findings in ecological terms.
DOCUMENT
The consumer electronics (CE) industry has high turnovers and a growing demand, such as on the home entertainment segment. At the same time, it generates e-waste of the order of a dozen million tons, about one quarter of the world's total. With the purpose of improving the environmental performance of businesses, the Waste Electrical and Electronic Equipment (WEEE) Directive was put in place in Europe. Given the high competitive environment of this industry, WEEE could be a clue for competitive edge. To create an environmental and economic win-win situation, however, companies have to master reverse logistics (RL). This is particularly challenging in fast clockspeed environments, as it is the case for the CE industry. In this paper, we develop a theoretically and empirically grounded diagnostic tool for assessing a CE company's RL practices and identifying potential for RL improvement, from a business perspective. To theoretically ground the tool, we combine specific CE literature with general theory on reverse logistics management and performance improvement. To empirically ground the tool, we collect field data by combining quantitative (a multiactor survey) with qualitative (interviews and company visits) methods. We demonstrate how our tool can be used to create awareness at senior management about the reverse logistics maturity state.
LINK
This paper presents challenges in city logistics for circular supply chains of e-e-waste. Efficient e-waste management is one of the strategies to save materials, critical minerals, and precious metals. E-waste collection and recycling have gained attention recently due to lower collection and recycling rates. However, implementing circular urban supply chains is a significant economic transformation that can only work if coordination decisions are solved between the actors involved. On the one hand, this requires the implementation of efficient urban collection technologies, where waste collection companies collaborate with manufacturers, urban waste treatment specialists, and city logistics service providers supported by digital solutions for visibility and planning. On the other hand, it also requires implementing urban and regional ecosystems connected by innovative CO2-neutral circular city logistics systems. These systems must smoothly and sustainably manage the urban and regional flow of resources and data, often at a large scale and with interfaces between industrial processes, private, and public actors. This paper presents future research questions from a city logistics perspective based on a European project aimed at developing a blueprint for systemic solutions for the circularity of plastics from applications of rigid PU foams used as insulation material in refrigerators.
MULTIFILE
In the housing market enormous challenges exist for the retrofitting of existing housing in combination with the ambition to realize new environmentally friendly and affordable dwellings. Bio-based building materials offer the possibility to use renewable resources in building and construction. The efficient use of bio-based building materials is desirable due to several potential advantages related to environmental and economic aspects e.g. CO2 fixation and additional value. The potential biodegradability of biomaterials however demands also in-novative solutions to avoid e.g. the use of environmental harmful substances. It is essential to use balanced technological solutions, which consider aspects like service life or technical per-formance as well as environmental aspects. Circular economy and biodiversity also play an im-portant role in these concepts and potential production chains. Other questions arise considering the interaction with other large biomass users e.g. food production. What will be the impact if we use more bio-based building materials with regard to biodiversity and resource availability? Does this create opportunities or risks for the increasing use of bio-based building materials or does intelligent use of biomass in building materials offer the possibility to apply still unused (bio) resources and use them as a carbon sink? Potential routes of intelligent usage of biomass as well as potential risks and disadvantages are highlighted and discussed in relation to resource efficiency and decoupling concept(s).
DOCUMENT
Wood is an increasingly demanded renewable resource and an important raw material for construction and materials. Demands are rising, with a growing attention for re-use and upcycling, opening up opportunities for new business models, empowered by the use of digital design and technologies. A KPI framework was developed to evaluate the environmental, social, and economic aspects of using recycled wood in robotic manufacturing. This paper explores the use of this framework, focusing on a case study: the "One Plank" Challenge. The study reveals that environmental gains from using waste wood are comparable to production burdens, with significant variation depending on wood type. Production time, encompassing both human and robotic aspects, significantly impacts cost-effectiveness. The findings underscore the importance of considering lifecycle impacts in promoting sustainable robotic manufacturing practices.
MULTIFILE
From the list of content: " Smart sustainable cities & higher education, Essence: what, why & how? Developing learning materials together; The blended learning environment; Teaching on entrepreneurship; Utrecht municipality as a client; International results; Studentexperiences; International relations; City projects in Turku, Alcoy and Utrecht ".
DOCUMENT
Contribution to conference magazine https://husite.nl/ssc2017/ Conference ‘Smart Sustainable Cities 2017 – Viable Solutions’ The conference ‘Smart Sustainable Cities 2017 – Viable Solutions’ was held on 14 June 2017 in Utrecht, the Netherlands. Over 250 participants from all over Europe attended the conference.
DOCUMENT
In ESSENCE (European Sustainable Solutions for Existing and New City Environments) "five European Higher Education Institutions and three municipalities worked together to train future professionals to overcome the complex challenges of achieving smart sustainable cities. Students worked on behalf of the three local governments on useful solutions to sustainability issues in the urban environment. New teaching methods were applied, such as blended learning and creative solution searching methods. "
DOCUMENT