Artificial intelligence-driven technology increasingly shapes work practices and, accordingly, employees’ opportunities for meaningful work (MW). In our paper, we identify five dimensions of MW: pursuing a purpose, social relationships, exercising skills and self-development, autonomy, self-esteem and recognition. Because MW is an important good, lacking opportunities for MW is a serious disadvantage. Therefore, we need to know to what extent employers have a duty to provide this good to their employees. We hold that employers have a duty of beneficence to design for opportunities for MW when implementing AI-technology in the workplace. We argue that this duty of beneficence is supported by the three major ethical theories, namely, Kantian ethics, consequentialism, and virtue ethics. We defend this duty against two objections, including the view that it is incompatible with the shareholder theory of the firm. We then employ the five dimensions of MW as our analytical lens to investigate how AI-based technological innovation in logistic warehouses has an impact, both positively and negatively, on MW, and illustrate that design for MW is feasible. We further support this practical feasibility with the help of insights from organizational psychology. We end by discussing how AI-based technology has an impact both on meaningful work (often seen as an aspirational goal) and decent work (generally seen as a matter of justice). Accordingly, ethical reflection on meaningful and decent work should become more integrated to do justice to how AI-technology inevitably shapes both simultaneously.
Developers of charging infrastructure, be it public or private parties, are highly dependent on accurate utilization data in order to make informed decisions where and when to expand charging points. The Amsterdam University of Applied Sciences, in close cooperation with the municipalities of Amsterdam, Rotterdam, The Hague, Utrecht, and the Metropolitan Region of Amsterdam Electric, developed both the back- and front-end of a charging infrastructure assessment platform that processes and represents real-life charging data. Charging infrastructure planning and design methods described in the literature use geographic information system data, traffic flow data of non-EV vehicles, or geographical distributions of, for example, refueling stations for combustion engine vehicles. Only limited methods apply real-life charging data. Rolling out public charging infrastructure is a balancing act between stimulating the transition to zero-emission transport by enabling (candidate) EV drivers to charge, and limiting costly investments in public charging infrastructure. Five key performance indicators for charging infrastructure utilization are derived from literature, workshops, and discussions with practitioners. The paper describes the Data Warehouse architecture designed for processing large amounts of charging data, and the web-based assessment platform by which practitioners get access to relevant knowledge and information about the current performance of existing charging infrastructure represented by the key performance indicators developed. The platform allows stakeholders in the decision-making process of charging point installation to make informed decisions on where and how to expand the already existing charging infrastructure. The results are generalizable beyond the case study regions in the Netherlands and can serve the roll-out of charging infrastructure, both public and semi-public, all over the world.
Process Mining can roughly be defined as a data-driven approach to process management. The basic idea of process mining is to automatically distill and to visualize business processes using event logs from company IT-systems (e.g. ERP, WMS, CRM etc.) to identify specific areas for improvement at an operational level. An event log can be described as a database entry that signifies a specific action in a software application at a specific time. Simple examples of these actions are customer order entries, scanning an item in a warehouse, and registration of a patient for a hospital check-up.Process mining has gained popularity in the logistics domain in recent years because of three main reasons. Firstly, the logistics IT-systems' large and exponentially growing amounts of event data are being stored and provide detailed information on the history of logistics processes. Secondly, to outperform competitors, most organizations are searching for (new) ways to improve their logistics processes such as reducing costs and lead time. Thirdly, since the 1970s, the power of computers has grown at an astonishing rate. As such, the use of advance algorithms for business purposes, which requires a certain amount of computational power, have become more accessible.Before diving into Process Mining, this course will first discuss some basic concepts, theories, and methods regarding the visualization and improvement of business processes.
MULTIFILE