Background & aim The aim of this study was to describe a decrease in resting energy expenditure during weight loss that is larger than expected based on changes in body composition, called adaptive thermogenesis (AT), in overweight and obese older adults. Methods Multiple studies were combined to assess AT in younger and older subjects. Body composition and resting energy expenditure (REE) were measured before and after weight loss. Baseline values were used to predict fat free mass and fat mass adjusted REE after weight loss. AT was defined as the difference between predicted and measured REE after weight loss. The median age of 55 y was used as a cutoff to compare older with younger subjects. The relation between AT and age was investigated using linear regression analysis. Results In this study 254 (M = 88, F = 166) overweight and obese subjects were included (BMI: 31.7 ± 4.4 kg/m2, age: 51 ± 14 y). The AT was only significant for older subjects (64 ± 185 kcal/d, 95% CI [32, 96]), but not for younger subjects (19 ± 152 kcal/d, 95% CI [−9, 46]). The size of the AT was significantly higher for older compared to younger adults (β = 47, p = 0.048), independent of gender and type and duration of the weight loss program. Conclusions We conclude that adaptive thermogenesis is present only in older subjects, which might have implications for weight management in older adults. A reduced energy intake is advised to counteract the adaptive thermogenesis.
DOCUMENT
OBJECTIVES: Patients with head and neck cancer (HNC) frequently encounter weight loss with multiple negative outcomes as a consequence. Adequate treatment is best achieved by early identification of patients at risk for critical weight loss. The objective of this study was to detect predictive factors for critical weight loss in patients with HNC receiving (chemo)radiotherapy ((C)RT).MATERIALS AND METHODS: In this cohort study, 910 patients with HNC were included receiving RT (±surgery/concurrent chemotherapy) with curative intent. Body weight was measured at the start and end of (C)RT. Logistic regression and classification and regression tree (CART) analyses were used to analyse predictive factors for critical weight loss (defined as >5%) during (C)RT. Possible predictors included gender, age, WHO performance status, tumour location, TNM classification, treatment modality, RT technique (three-dimensional conformal RT (3D-RT) vs intensity-modulated RT (IMRT)), total dose on the primary tumour and RT on the elective or macroscopic lymph nodes.RESULTS: At the end of (C)RT, mean weight loss was 5.1±4.9%. Fifty percent of patients had critical weight loss during (C)RT. The main predictors for critical weight loss during (C)RT by both logistic and CART analyses were RT on the lymph nodes, higher RT dose on the primary tumour, receiving 3D-RT instead of IMRT, and younger age.CONCLUSION: Critical weight loss during (C)RT was prevalent in half of HNC patients. To predict critical weight loss, a practical prediction tree for adequate nutritional advice was developed, including the risk factors RT to the neck, higher RT dose, 3D-RT, and younger age.
DOCUMENT
RATIONALE: Currently there is no consensus on protein requirements for obese older adults during weight loss. Here we explore the potential use of a new method for assessment of protein requirements based on changes in appendicular muscle mass during weight loss.METHODS: 60 obese older adults were subjected to 13 wk weight loss program, including hypocaloric diet and resistance training. Assessment of appendicular muscle mass was performed by DXA at baseline and after 13 wk challenge period, and the difference calculated as muscle mass change. Protein intake (g/kg body weight and g/kg fat free mass (FFM)) at 13wks was used as marker of protein intake during 13 wk period. 30 subjects received 10 times weekly 20 g protein supplement throughout the 13 week hypocaloric phase which is included in the calculation of total protein intake. Receiver operating characteristic (ROC) curve analysis was used to explore the optimal cutoff point for protein intake (g/kg) versus increase in appendicular muscle mass of more than 250 g over 13 wks (y/n). Subsequently, logistic regression analysis was performed for protein intake cutoff and muscle mass accretion, adjusted for sex, age, baseline BMI, and training compliance.RESULTS: ROC curve analysis provided a protein intake level per day of 1.2 g/kg bw and 1.9 g/kg FFM as cutoff point. Presence of muscle mass accretion during 13 wk challenge period was significantly higher with protein intake higher than 1.2 g/kg bw (OR 5.4, 95%CI 1.4-20.6, p = 0.013) or higher than 1.9 g/kg FFM (OR 8.1, 95%CI 2.1-31.9, p = 0.003). Subjects with a protein intake higher than 1.2 g/kg had significantly more often muscle mass accretion, compared to subjects with less protein intake (10/14 (72%) vs 15/46 (33%), p = 0.010). For 1.9 g/kg FFM this was 70% vs 28% (p = 0.002).CONCLUSION: This exploratory study provided a level of at least 1.2 g/kg body weight or 1.9 g/kg fat free mass as optimal daily protein intake for obese older adults under these challenged conditions of weight loss, based on muscle mass accretion during the challenge.TRIAL REGISTRATION: Dutch Trial Register under number NTR2751.
DOCUMENT
Objective: To study the effects of a comprehensive secondary prevention programme on weight loss and to identify determinants of weight change in patients with coronary artery disease (CAD). Methods: We performed a secondary analysis focusing on the subgroup of overweight CAD patients (BMI ≥27 kg/m2) in the Randomised Evaluation of Secondary Prevention by Outpatient Nurse SpEcialists-2 (RESPONSE-2) multicentre randomised trial. We evaluated weight change from baseline to 12-month follow-up; multivariable logistic regression with backward elimination was used to identify determinants of weight change. Results: Intervention patients (n=280) lost significantly more weight than control patients (n=257) (-2.4±7.1 kg vs -0.2±4.6 kg; p<0.001). Individual weight change varied widely, with weight gain (≥1.0 kg) occurring in 36% of interventions versus 41% controls (p=0.21). In the intervention group, weight loss of ≥5% was associated with higher age (OR 2.94), lower educational level (OR 1.91), non-smoking status (OR 2.92), motivation to start with weight loss directly after the baseline visit (OR 2.31) and weight loss programme participation (OR 3.33), whereas weight gain (≥1 kg) was associated with smoking cessation ≤6 months before or during hospitalisation (OR 3.21), non-Caucasian ethnicity (OR 2.77), smoking at baseline (OR 2.70), lower age (<65 years) (OR 1.47) and weight loss programme participation (OR 0.59). Conclusion: The comprehensive secondary prevention programme was, on average, effective in achieving weight loss. However, wide variation was observed. As weight gain was observed in over one in three participants in both groups, prevention of weight gain may be as important as attempts to lose weight.
LINK
At the beginning of the twenty first century obesity entered Dutch maternity care as a ‘new illness’ challenging maternity care professionals in providing optimal care for women with higher BMI’s. International research revealed that obese women had more perinatal problems than normal weight women. However, the effect of higher BMIs on perinatal outcomes had never been studied in women eligible for midwife-led primary care at the outset of their pregnancy. In the context of the Dutch maternity care system, it was not clear if obesity should be treated as a high-risk situation always requiring obstetrician-led care or as a condition that may lead to problems that could be detected in a timely manner in midwife-led care using the usual risk assessment tools. With the increased attention on obesity in maternity care there was also increased interest in GWG. Regarding GWG in the Netherlands, the effect of insufficient or excessive GWG on perinatal outcomes had never been studied and there were no validated guidelines for GWG. A midwife’s care for the individual woman in the context of the Dutch maternity care system - characterised by ‘midwife-led care if possible, obstetrician-led care if needed’ - is hampered by the lack of national multidisciplinary consensus regarding obesity and weight gain. Obesity has not yet been included in the OIL and local protocols contain varying recommendations. To enable sound clinical decisions and to offer optimal individual care for pregnant women in the Netherlands more insights in weight and weight gain in relation to perinatal outcomes are required. With this thesis the author intends to contribute to the body of knowledge on weight and weight gain to enhance optimal midwife-led primary care for the individual woman and to guide midwives’ clinical decision-making.
DOCUMENT
Healthy gestational weight gain (GWG) is associated with better pregnancy outcomes and with improved health in the later lives of women and babies. In this thesis the author describes the process of developing an intervention to help pregnant women reach a healthy GWG. The need for this intervention was derived from discussions with midwives, working in primary care in the Netherlands. In this introduction, the author describes the background of the larger project “Promoting Health Pregnancy”, of which this study is a part (1.2), the problem of unhealthy GWG (1.3-1.6) and offers a brief introduction to the theoretical framework of the study and to the subsequent chapters (1.7-1.9).
DOCUMENT
Background: Skeletal muscle loss is often observed in intensive care patients. However, little is known about postoperative muscle loss, its associated risk factors, and its long-term consequences. The aim of this prospective observational study is to identify the incidence of and risk factors for surgery-related muscle loss (SRML) after major abdominal surgery, and to study the impact of SRML on fatigue and survival. Methods: Patients undergoing major abdominal cancer surgery were included in the MUSCLE POWER STUDY. Muscle thickness was measured by ultrasound in three muscles bilaterally (biceps brachii, rectus femoris, and vastus intermedius). SRML was defined as a decline of 10 per cent or more in diameter in at least one arm and leg muscle within 1 week postoperatively. Postoperative physical activity and nutritional intake were assessed using motility devices and nutritional diaries. Fatigue was measured with questionnaires and 1-year survival was assessed with Cox regression analysis. Results: A total of 173 patients (55 per cent male; mean (s.d.) age 64.3 (11.9) years) were included, 68 of whom patients (39 per cent) showed SRML. Preoperative weight loss and postoperative nutritional intake were statistically significantly associated with SRML in multivariable logistic regression analysis (P < 0.050). The combination of insufficient postoperative physical activity and nutritional intake had an odds ratio of 4.00 (95 per cent c.i. 1.03 to 15.47) of developing SRML (P = 0.045). No association with fatigue was observed. SRML was associated with decreased 1-year survival (hazard ratio 4.54, 95 per cent c.i. 1.42 to 14.58; P = 0.011). Conclusion: SRML occurred in 39 per cent of patients after major abdominal cancer surgery, and was associated with a decreased 1-year survival.
DOCUMENT
Background: Physical inactivity and overweight are two known risk factors for postmenopausal breast cancer. Former exercise intervention studies showed that physical activity influences sex hormone levels, known to be related to postmenopausal breast cancer, mainly when concordant loss of body weight was achieved. The question remains whether there is an additional beneficial effect of physical activity when weight loss is reached. The aim of this study is to investigate the effect attributable to exercise on postmenopausal breast cancer risk biomarkers, when equivalent weight loss is achieved compared with diet-induced weight loss. Design: The SHAPE-2 study is a three-armed, multicentre trial. 243 sedentary, postmenopausal women who are overweight or obese (BMI 25–35 kg/m2) are enrolled. After a 4-6 week run-in period, wherein a baseline diet is prescribed, women are randomly allocated to (1) a diet group, (2) an exercise group or (3) a control group. The aim of both intervention groups is to lose an amount of 5–6 kg body weight in 10–14 weeks. The diet group follows an energy restricted diet and maintains the habitual physical activity level. The exercise group participates in a 16-week endurance and strength training programme of 4 hours per week. Furthermore, they are prescribed a moderate caloric restriction. The control group is asked to maintain body weight and continue the run-in baseline diet. Measurements include blood sampling, questionnaires, anthropometrics (weight, height, waist and hip circumference), maximal cycle exercise test (VO2peak), DEXA-scan (body composition) and abdominal MRI (subcutaneous and visceral fat). Primary outcomes are serum levels of oestradiol, oestrone, testosterone and sex hormone binding globulin (SHBG). Discussion: This study will give insight in the potential attributable effect of physical activity on breast cancer risk biomarkers and whether this effect is mediated by changes in body composition, in postmenopausal women. Eventually this may lead to the design of specific lifestyle guidelines for prevention of breast cancer. Trial registration: The SHAPE-2 study is registered in the register of clinicaltrials.gov, Identifier: NCT01511276.
DOCUMENT
OBJECTIVE: To study the effects of a comprehensive secondary prevention programme on weight loss and to identify determinants of weight change in patients with coronary artery disease (CAD).METHODS: We performed a secondary analysis focusing on the subgroup of overweight CAD patients (BMI ≥27 kg/m2) in the Randomised Evaluation of Secondary Prevention by Outpatient Nurse SpEcialists-2 (RESPONSE-2) multicentre randomised trial. We evaluated weight change from baseline to 12-month follow-up; multivariable logistic regression with backward elimination was used to identify determinants of weight change.RESULTS: Intervention patients (n=280) lost significantly more weight than control patients (n=257) (-2.4±7.1 kg vs -0.2±4.6 kg; p<0.001). Individual weight change varied widely, with weight gain (≥1.0 kg) occurring in 36% of interventions versus 41% controls (p=0.21). In the intervention group, weight loss of ≥5% was associated with higher age (OR 2.94), lower educational level (OR 1.91), non-smoking status (OR 2.92), motivation to start with weight loss directly after the baseline visit (OR 2.31) and weight loss programme participation (OR 3.33), whereas weight gain (≥1 kg) was associated with smoking cessation ≤6 months before or during hospitalisation (OR 3.21), non-Caucasian ethnicity (OR 2.77), smoking at baseline (OR 2.70), lower age (<65 years) (OR 1.47) and weight loss programme participation (OR 0.59).CONCLUSION: The comprehensive secondary prevention programme was, on average, effective in achieving weight loss. However, wide variation was observed. As weight gain was observed in over one in three participants in both groups, prevention of weight gain may be as important as attempts to lose weight.TRIAL REGISTRATION NUMBER: NTR3937.
DOCUMENT
Abstract Background: Antipsychotic-induced Weight Gain (AiWG) is a debilitating and common adverse effect of antipsychotics. AiWG negatively impacts life expectancy, quality of life, treatment adherence, likelihood of developing type-2 diabetes and readmission. Treatment of AiWG is currently challenging, and there is no consensus on the optimal management strategy. In this study, we aim to evaluate the use of metformin for the treatment of AiWG by comparing metformin with placebo in those receiving treatment as usual, which includes a lifestyle intervention. Methods: In this randomized, double-blind, multicenter, placebo-controlled, pragmatic trial with a follow-up of 52 weeks, we aim to include 256 overweight participants (Body Mass Index (BMI) > 25 kg/m2) of at least 16years of age. Patients are eligible if they have been diagnosed with schizophrenia spectrum disorder and if they have been using an antipsychotic for at least three months. Participants will be randomized with a 1:1 allocation to placebo or metformin, and will be treated for a total of 26 weeks. Metformin will be started at 500 mg b.i.d. and escalated to 1000 mg b.i.d. 2 weeks thereafter (up to a maximum of 2000mg daily). In addition, all participants will undergo a lifestyle intervention as part of the usual treatment consisting of a combination of an exercise program and dietary consultations. The primary outcome measure is difference in body weight as a continuous trait between the two arms from treatment inception until 26 weeks of treatment, compared to baseline. Secondary outcome measures include: 1) Any element of metabolic syndrome (MetS); 2) Response, defined as ≥5% body weight loss at 26 weeks relative to treatment inception; 3) Quality of life; 4) General mental and physical health; and 5) Cost-effectiveness. Finally, we aim to assess whether genetic liability to BMI and MetS may help estimate the amount of weight reduction following initiation of metformin treatment. Discussion: The pragmatic design of the current trial allows for a comparison of the efficacy and safety of metformin in combination with a lifestyle intervention in the treatment of AiWG, facilitating the development of guidelines on the interventions for this major health problem.
DOCUMENT