In wheelchair sports, there is an increasing need to monitor mechanical power in the field. When rolling resistance is known, inertial measurement units (IMUs) can be used to determine mechanical power. However, upper body (i.e., trunk) motion affects the mass distribution between the small front and large rear wheels, thus affecting rolling resistance. Therefore, drag tests – which are commonly used to estimate rolling resistance – may not be valid. The aim of this study was to investigate the influence of trunk motion on mechanical power estimates in hand-rim wheelchair propulsion by comparing instantaneous resistance-based power loss with drag test-based power loss. Experiments were performed with no, moderate and full trunk motion during wheelchair propulsion. During these experiments, power loss was determined based on 1) the instantaneous rolling resistance and 2) based on the rolling resistance determined from drag tests (thus neglecting the effects of trunk motion). Results showed that power loss values of the two methods were similar when no trunk motion was present (mean difference [MD] of 0.6 1.6 %). However, drag test-based power loss was underestimated up to −3.3 2.3 % MD when the extent of trunk motion increased (r = 0.85). To conclude, during wheelchair propulsion with active trunk motion, neglecting the effects of trunk motion leads to an underestimated mechanical power of 1 to 6 % when it is estimated with drag test values. Depending on the required accuracy and the amount of trunk motion in the target group, the influence of trunk motion on power estimates should be corrected for.
DOCUMENT
The wheelchair ergometer (Lode Esseda) can be used to monitor propulsion variables of wheelchair users, for example to evaluate wheelchair adaptations. In order to interpret the outcomes of the measurements and to support clinical decision making, it is important to distinguish real changes in propulsion technique and physiological outcomes from measurement errors.
DOCUMENT
Accurate assessment of rolling resistance is important for wheelchair propulsion analyses. However, the commonly used drag and deceleration tests are reported to underestimate rolling resistance up to 6% due to the (neglected) influence of trunk motion. The first aim of this study was to investigate the accuracy of using trunk and wheelchair kinematics to predict the intra-cyclical load distribution, more particularly front wheel loading, during hand-rim wheelchair propulsion. Secondly, the study compared the accuracy of rolling resistance determined from the predicted load distribution with the accuracy of drag test-based rolling resistance. Twenty-five able-bodied participants performed hand-rim wheelchair propulsion on a large motor-driven treadmill. During the treadmill sessions, front wheel load was assessed with load pins to determine the load distribution between the front and rear wheels. Accordingly, a machine learning model was trained to predict front wheel load from kinematic data. Based on two inertial sensors (attached to the trunk and wheelchair) and the machine learning model, front wheel load was predicted with a mean absolute error (MAE) of 3.8% (or 1.8 kg). Rolling resistance determined from the predicted load distribution (MAE: 0.9%, mean error (ME): 0.1%) was more accurate than drag test-based rolling resistance (MAE: 2.5%, ME: −1.3%).
DOCUMENT
Within rehabilitation, there is a great need for a simple method to monitor wheelchair use, especially whether it is active or passive. For this purpose, an existing measurement technique was extended with a method for detecting self- or attendant-pushed wheelchair propulsion. The aim of this study was to validate this new detection method by comparison with manual annotation of wheelchair use. Twenty-four amputation and stroke patients completed a semi-structured course of active and passive wheelchair use. Based on a machine learning approach, a method was developed that detected the type of movement. The machine learning method was trained based on the data of a single-wheel sensor as well as a setup using an additional sensor on the frame. The method showed high accuracy (F1 = 0.886, frame and wheel sensor) even if only a single wheel sensor was used (F1 = 0.827). The developed and validated measurement method is ideally suited to easily determine wheelchair use and the corresponding activity level of patients in rehabilitation.
DOCUMENT
Daily wheelchair ambulation is seen as a risk factor for shoulder problems, which are prevalent in manual wheelchair users. To examine the long-term effect of shoulder load from daily wheelchair ambulation on shoulder problems, quantification is required in real-life settings. In this study, we describe and validate a comprehensive and unobtrusive methodology to derive clinically relevant wheelchair mobility metrics (WCMMs) from inertial measurement systems (IMUs) placed on the wheelchair frame and wheel in real-life settings. The set of WCMMs includes distance covered by the wheelchair, linear velocity of the wheelchair, number and duration of pushes, number and magnitude of turns and inclination of the wheelchair when on a slope. Data are collected from ten able-bodied participants, trained in wheelchair-related activities, who followed a 40 min course over the campus. The IMU-derived WCMMs are validated against accepted reference methods such as Smartwheel and video analysis. Intraclass correlation (ICC) is applied to test the reliability of the IMU method. IMU-derived push duration appeared to be less comparable with Smartwheel estimates, as it measures the effect of all energy applied to the wheelchair (including thorax and upper extremity movements), whereas the Smartwheel only measures forces and torques applied by the hand at the rim. All other WCMMs can be reliably estimated from real-life IMU data, with small errors and high ICCs, which opens the way to further examine real-life behavior in wheelchair ambulation with respect to shoulder loading. Moreover, WCMMs can be applied to other applications, including health tracking for individual interest or in therapy settings.
DOCUMENT
An important performance determinant in wheelchair sports is the power exchanged between the athletewheelchair combination and the environment, in short, mechanical power. Inertial measurement units (IMUs) might be used to estimate the exchanged mechanical power during wheelchair sports practice. However, to validly apply IMUs for mechanical power assessment in wheelchair sports, a well-founded and unambiguous theoretical framework is required that follows the dynamics of manual wheelchair propulsion. Therefore, this research has two goals. First, to present a theoretical framework that supports the use of IMUs to estimate power output via power balance equations. Second, to demonstrate the use of the IMU-based power estimates during wheelchair propulsion based on experimental data. Mechanical power during straight-line wheelchair propulsion on a treadmill was estimated using a wheel mounted IMU and was subsequently compared to optical motion capture data serving as a reference. IMU-based power was calculated from rolling resistance (estimated from drag tests) and change in kinetic energy (estimated using wheelchair velocity and wheelchair acceleration). The results reveal no significant difference between reference power values and the proposed IMU-based power (1.8% mean difference, N.S.). As the estimated rolling resistance shows a 0.9–1.7% underestimation, over time, IMU-based power will be slightly underestimated as well. To conclude, the theoretical framework and the resulting IMU model seems to provide acceptable estimates of mechanical power during straight-line wheelchair propulsion in wheelchair (sports) practice, and it is an important first step towards feasible power estimations in all wheelchair sports situations.
DOCUMENT
Wheelchair adaptations are mainly based on expert opinion obtained from observation. The Lode Esseda wheelchair ergometer provides objective data and may therefore support clinical decision-making.
DOCUMENT
Wheelchair ergometer Obtaining objective propulsion data to analyze the interface of user and wheelchair in action to contribute to the advice for adjustments. Active lifestyle A well-adjusted wheelchair can contribute to an active lifestyle, maximal participation in society and avoiding overload. Current status Protocol consisted of 30s sprint, driving at comfortable speed and maintaining given constant speed.
DOCUMENT
The aim of this explorative study was to determine the key inertial measurement unit-based wheelchair mobility performance components during a wheelchair tennis match. A total of 64 wheelchair tennis matches were played by 15 wheelchair tennis players (6 women, 5 men, 4 juniors). All individual tennis wheelchairs were instrumented with inertial measurement units, two on the axes of the wheels and one on the frame. A total of 48 potentially relevant wheelchair tennis outcome variables were initially extracted from the sensor signals, based on previous wheelchair sports research and the input of wheelchair tennis experts (coaches, embedded scientists). A principal component analysis was used to reduce this set of variables to the most relevant outcomes for wheelchair tennis mobility. Results showed that wheelchair mobility performance in wheelchair tennis can be described by six components: rotations to racket side in (1) curves and (2) turns; (3) linear accelerations; (4) rotations to non-racket side in (4) turns and (5) curves; and finally, (6) linear velocities. One or two outcome variables per component were selected to allow an easier interpretation of results. These key outcome variables can be used to adequately describe the wheelchair mobility performance aspect of wheelchair tennis during a wheelchair tennis match and can be monitored during training.
DOCUMENT
Paralympic wheelchair athletes solely depend on the power of their upper-body for their on-court wheeled mobility as well as for performing sport-specific actions in ball sports, like a basketball shot or a tennis serve. The objective of WheelPower is to improve the power output of athletes in their sport-specific wheelchair to perform better in competition. To achieve this objective the current project systematically combines the three Dutch measurement innovations (WMPM, Esseda wheelchair ergometer, PitchPerfect system) to monitor a large population of athletes from different wheelchair sports resulting in optimal power production by wheelchair athletes during competition. The data will be directly implemented in feedback tools accessible to athletes, trainers and coaches which gives them the unique opportunity to adapt their training and wheelchair settings for optimal performance. Hence, the current consortium facilitates mass and focus by uniting scientists and all major Paralympic wheelchair sports to monitor the power output of many wheelchair athletes under field and lab conditions, which will be assisted by the best data science approach to this challenge.
DOCUMENT