Purpose: To evaluate the effects of a combination of wheelchair mobility skills (WMS) training and exercise training on physical activity (PA), WMS, confidence in wheelchair mobility, and physical fitness. Methods: Youth using a manual wheelchair (n = 60) participated in this practice-based intervention, with a waiting list period (16 weeks), exercise training (8 weeks), WMS training (8 weeks), and follow-up (16 weeks). Repeated measures included: PA (Activ8), WMS (Utrecht Pediatric Wheelchair Mobility Skills Test), confidence in wheelchair mobility (Wheelchair Mobility Confidence Scale), and physical fitness (cardiorespiratory fitness, (an)aerobic performance) and were analysed per outcome parameter using a multilevel model analyses. Differences between the waiting list and training period were determined with an unpaired sample t-test. Results: Multilevel model analysis showed significant positive effects for PA (p = 0.01), WMS (p < 0.001), confidence in wheelchair mobility (p < 0.001), aerobic (p < 0.001), and anaerobic performance (p < 0.001). Unpaired sample t-tests underscored these effects for PA (p < 0.01) and WMS (p < 0.001). There were no effects on cardiorespiratory fitness. The order of training (exercise before WMS) had a significant effect on confidence in wheelchair mobility. Conclusions: A combination of exercise and WMS training appears to have significant positive long-term effects on PA, WMS, confidence in wheelchair mobility, and (an)aerobic performance in youth using a manual wheelchair.Implications for rehabilitationExercise training and wheelchair mobility skills (WMS) training can lead to a sustained improvement in physical activity (PA) in youth using a manual wheelchair.These combined trainings can also lead to a sustained increase in WMS, confidence in wheelchair mobility, and (an)aerobic performance.More attention is needed in clinical practice and in research towards improving PA in youth using a manual wheelchair.
Background Testing aerobic fitness in youth is important because of expected relationships with health. Objective The purpose of the study was to estimate the validity and reliability of the Shuttle Ride Test in youth who have spina bifida and use a wheelchair for mobility and sport. Design Ths study is a validity and reliability study. Methods The Shuttle Ride Test, Graded Wheelchair Propulsion Test, and skill-related fitness tests were administered to 33 participants for the validity study (age = 14.5 ± 3.1 y) and to 28 participants for the reliability study (age = 14.7 ± 3.3 y). Results No significant differences were found between the Graded Wheelchair Propulsion Test and the Shuttle Ride Test for most cardiorespiratory responses. Correlations between the Graded Wheelchair Propulsion Test and the Shuttle Ride Test were moderate to high (r = .55–.97). The variance in peak oxygen uptake (VO2peak) could be predicted for 77% of the participants by height, number of shuttles completed, and weight, with large prediction intervals. High correlations were found between number of shuttles completed and skill-related fitness tests (CI = .73 to −.92). Intraclass correlation coefficients were high (.77–.98), with a smallest detectable change of 1.5 for number of shuttles completed and with coefficients of variation of 6.2% and 6.4% for absolute VO2peak and relative VO2peak, respectively. Conclusions When measuring VO2peak directly by using a mobile gas analysis system, the Shuttle Ride Test is highly valid for testing VO2peak in youth who have spina bifida and use a wheelchair for mobility and sport. The outcome measure of number of shuttles represents aerobic fitness and is also highly correlated with both anaerobic performance and agility. It is not possible to predict VO2peak accurately by using the number of shuttles completed. Moreover, the Shuttle Ride Test is highly reliable in youth with spina bifida, with a good smallest detectable change for the number of shuttles completed.
In this study we measured the performance times on the Wheelchair Mobility Performance (WMP) test during different test conditions to see if the performance times changed when wheelchair settings were changed. The overall performance time on the WMP test increased when the tire pressure was reduced and also when extra mass was attached to the wheelchair. It can be concluded that the WMP test is sensitive to changes in wheelchair settings. It is recommended to use this field-based test in further research to investigate the effect of wheelchair settings on mobility performance time. Objective: The Wheelchair Mobility Performance (WMP) test is a reliable and valid measure to assess mobility performance in wheelchair basketball. The aim of this study was to examine the sensitivity to change of the WMP test by manipulating wheelchair configurations. Methods: Sixteen wheelchair basketball players performed the WMP test 3 times in their own wheelchair: (i) without adjustments (“control condition”); (ii) with 10 kg additional mass (“weighted condition”); and (iii) with 50% reduced tyre pressure (“tyre condition”). The outcome measure was time (s). If paired t-tests were significant (p < 0.05) and differences between conditions were larger than the standard error of measurement, the effect sizes (ES) were used to evaluate the sensitivity to change. ES values ≥0.2 were regarded as sensitive to change. Results: The overall performance times for the manipulations were significantly higher than the control condition, with mean differences of 4.40 s (weight – control, ES = 0.44) and 2.81 s (tyre – control, ES = 0.27). The overall performance time on the WMP test was judged as sensitive to change. For 8 of the 15 separate tasks on the WMP test, the tasks were judged as sensitive to change for at least one of the manipulations. Conclusion: The WMP test can detect change in mobility performance when wheelchair configurations are manipulated. https://www.medicaljournals.se/jrm/content/html/10.2340/16501977-2341