Samenvatting: In het kader van een afstudeerproject zijn data van 33 kinderen verzameld die een X-abdomen onderzoek ondergingen in het Wilhelmina Kinderziekenhuis. Uit deze data zijn curves afgeleid van Dosis Oppervlakte Product (DOP) ten opzichte van het lichaamsgewicht om te dienen als Diagnostisch ReferentieNiveau (DRN). De spreiding in de data leidt echter tot onzekerheid over de beste DRN-curve. Die curve is bovendien slechts gebaseerd op de data van één ziekenhuis en is daarmee hooguit bruikbaar als lokaal DRN. Door deze studie te herhalen in andere ziekenhuizen en meer data te verzamelen zou een nationale DRN-curve afgeleid kunnen worden. Zo’n curve zou de toetsing van doses aan DRN’s voor kinderen vergemakkelijken.
DOCUMENT
Abstract gepubliceerd in Elsevier: Introduction: Recent research has identified the issue of ‘dose creep’ in diagnostic radiography and claims it is due to the introduction of CR and DR technology. More recently radiographers have reported that they do not regularly manipulate exposure factors for different sized patients and rely on pre-set exposures. The aim of the study was to identify any variation in knowledge and radiographic practice across Europe when imaging the chest, abdomen and pelvis using digital imaging. Methods: A random selection of 50% of educational institutes (n ¼ 17) which were affiliated members of the European Federation of Radiographer Societies (EFRS) were contacted via their contact details supplied on the EFRS website. Each of these institutes identified appropriate radiographic staff in their clinical network to complete an online survey via SurveyMonkey. Data was collected on exposures used for 3 common x-ray examinations using CR/DR, range of equipment in use, staff educational training and awareness of DRL. Descriptive statistics were performed with the aid of Excel and SPSS version 21. Results: A response rate of 70% was achieved from the affiliated educational members of EFRS and a rate of 55% from the individual hospitals in 12 countries across Europe. Variation was identified in practice when imaging the chest, abdomen and pelvis using both CR and DR digital systems. There is wide variation in radiographer training/education across countries.
DOCUMENT
In 2015 hebben studenten Medische Beeldvormende en Radiotherapeutische Technieken (MBRT) van Hogeschool Inholland, de Hanzehogeschool en de Fontys Paramedische Hogeschool dosismetingen uitgevoerd bij 21 ziekenhuizen en deze getoetst aan de Diagnostische Referentieniveaus (DRN’s) en vergeleken met de streefwaarden. Het project werd uitgevoerd in opdracht van het RIVM en gefinancierd door het Ministerie van Volksgezondheid, Welzijn en Sport. Uit de toetsingen blijkt dat de DRN’s voor de röntgenopnamen bij volwassenen (X thorax, X bekken, CAG en mammografie) zelden worden overschreden en dat de streefwaarden vaak worden gehaald. Sterker nog, de 75-percentielwaarden van de gevonden waarden geven aanleiding sommige DRN’s te verlagen tot de streefwaarde. Bij de CT verrichtingen komen iets vaker overschrijdingen van streefwaarden en DRN’s voor, m.n. bij CT pulmonale angiografie (CTPA) en CT abdomen.
DOCUMENT
In 2014 heeft Hogeschool Inholland samen met het RIVM voor het Ministerie van Volksgezondheid, Welzijn en Sport een pilotproject uitgevoerd. In dit project hebben studenten Medische Beeldvormende en Radiotherapeutische Technieken dosismetingen uitgevoerd bij 8 ziekenhuizen en deze getoetst aan de Diagnostische Referentieniveaus (DRN’s). In alle gevallen bleken de toetsingswaarden lager dan het DRN en in de meeste gevallen ook lager dan de streefwaarde. De verschillen in doses tussen de ziekenhuizen waren maximaal een factor 2-3. Opvallend genoeg werden in een enkel geval soortgelijke verschillen binnen 1 ziekenhuis aangetroffen. In 2015 wordt dit project uitgebreid en gaan de Fontys Hogeschool en de Hanzehogeschool meedoen.
DOCUMENT
Introduction: In the Netherlands, Diagnostic Reference Levels (DRLs) have not been based on a national survey as proposed by ICRP. Instead, local exposure data, expert judgment and the international scientific literature were used as sources. This study investigated whether the current DRLs are reasonable for Dutch radiological practice. Methods: A national project was set up, in which radiography students carried out dose measurements in hospitals supervised by medical physicists. The project ran from 2014 to 2017 and dose values were analysed for a trend over time. In the absence of such a trend, the joint yearly data sets were considered a single data set and were analysed together. In this way the national project mimicked a national survey. Results: For six out of eleven radiological procedures enough data was collected for further analysis. In the first step of the analysis no trend was found over time for any of these procedures. In the second step the joint analysis lead to suggestions for five new DRL values that are far below the current ones. The new DRLs are based on the 75 percentile values of the distributions of all dose data per procedure. Conclusion: The results show that the current DRLs are too high for five of the six procedures that have been analysed. For the other five procedures more data needs to be collected. Moreover, the mean weights of the patients are higher than expected. This introduces bias when these are not recorded and the mean weight is assumed to be 77 kg. Implications for practice: The current checking of doses for compliance with the DRLs needs to be changed. Both the procedure (regarding weights) and the values of the DRLs should be updated.
MULTIFILE
Diagnostic reference levels (DRLs) for medical x-ray procedures are being implemented currently in the Netherlands. By order of the Dutch Healthcare Inspectorate, a survey has been conducted among 20 Dutch hospitals to investigate the level of implementation of the Dutch DRLs in current radiological practice. It turns out that hospitals are either well underway in implementing the DRLs or have already done so. However, the DRLs have usually not yet been incorporated in the QAsystem of the department nor in the treatment protocols. It was shown that the amount of radiation used, as far as it was indicated by the hospitals, usually remains below the DRLs. A procedure for comparing dose levels to the DRLs has been prescribed but is not Always followed in practice. This is especially difficult in the case of children, as most general hospitals receive few children. Health Phys. 108(4):462–464; 2015
DOCUMENT
Purpose: This research aimed to explore factors associated with patient-reported breast and abdominal scar quality after deep inferior epigastric perforator (DIEP) flap breast reconstruction (BR). Material and Methods: This study was designed as a descriptive cross-sectional survey in which women after DIEP flap BR were invited to complete an online survey on breast and abdominal scarring. The online survey was distributed in the Netherlands in several ways in order to reach a diverse population of women. Outcomes were assessed with the Patient Scale of the Patient and Observer Scar Assessment Scale (POSAS). Additional items were assessed with a numeric rating scale (NRS). Results: A total of 248 women completed the survey. There was a statistically significant worse POSAS scar appraisal for the abdominal scar compared with the breast scar. The vast majority of women reported high scores on at least one scar characteristic of their breast scar or ab- dominal scar. Overall, color, stiffness, thickness, and irregularity scored higher than pain and itching. Women were only moderately positive about the size, noticeability, location, and the information provided regarding scarring. Conclusion: It is crucial to address the inevitability of scars in patient education before a DIEP flap BR, with a particular focus on the abdominal scar, as women experience abdominal scars significantly worse than their breast scars. Providing more information on the experience of other women and the expected appearance will contribute to having realistic expectations while allowing them to make well-informed decisions.
DOCUMENT
Abstract: Since the first Oxford Survey of Childhood Cancer’s results were published, people have become more aware of the risks associated with prenatal exposure from diagnostic x rays. As a result, it has since been the subject of many studies. In this review, the results of recent epidemiological studies are summarized. The current international guidelines for diagnostic x-ray examinations were compared to the review. All epidemiological studies starting from 2007 and all relevant international guidelines were included. Apart from one study that involved rhabdomyosarcoma, no statistically significant associations were found between prenatal exposure to x rays and the development of cancer during 2007–2020. Most of the studies were constrained in their design due to too small a cohort or number of cases, minimal x-ray exposure, and/or data obtained from the exposed mothers instead of medical reports. In one of the studies, computed tomography exposure was also included, and this requires more and longer follow-up in successive studies. Most international guidelines are comparable, provide risk coefficients that are quite conservative, and discourage abdominal examinations of pregnant women.
DOCUMENT
Breast cancer is the most prevalent form of cancer that affects women worldwide, posing a significant burden on public health. While advancements in early detection and improved treatments have led to a remarkable 90% five-year survival rate and an 83% ten-year survival rate, this has also resulted in more prophylactic mastectomies being performed. Despite advancements in breast-conserving techniques, immunotherapy, and hormone therapy, many women still undergo mastectomies as part of their cancer treatment. In all cases, this results in scarring, and additional side effects from treatment modalities may arise. The loss of a breast can profoundly impact health-related quality of life (HRQoL). Although HRQoL has improved greatly during the recent years, systematic and local therapy having side effects is not uncommon, and this needs more attention.
DOCUMENT
Introduction: The Netherlands does not have a national guideline for performing radiographic examinations on pregnant patients. Radiographic examination is a generic term for all examinations performed using ionizing radiation, including but not limited to radiographs, fluoroscopy and computed tomography. A pilot study amongst radiographers (Medical Radiation Technologists (MRTs)) showed that standardized practice of radiographic examinations on pregnant women is not evident between Radiology departments and that there is a need for a national guideline as the varying practice methods may lead to confusion and uncertainty amongst both patients and MRTs. Methods: Focus groups consisting of MRTs from several Radiology departments within the Netherlands were used to map ideas and requirements as to what should be included in the national guideline. Nine focus group sessions were organized with a total of 52 participants. Using a previous review (Wit, Fleur; Vroonland, Colinda; Bijwaard H. Pre-natal X-ray exposure and the risk of developing paediatric cancer; a systematic review of risk factors and a comparison of international guidelines. Health Physics 2021; 121 (3):225e233), the following key points were chosen as discussion topics for the focus group sessions: dose reduction, confirming pregnancy and risk communication. Results: Results showed that the participating MRTs did not agree on the use of lead aprons. That the national guideline should include standardized methods to adjust parameters to decrease radiation dose. Focus group participants find it difficult to ask a patient's pregnancy status, especially when dealing with relatively young and old (er) patients. When communicating the level of risk associated with a radiographic examination the participating MRTs would like to be able to use examples and comparisons, preferably by means of a multilingual website. Conclusion: A national guideline must include information on justification, available alternatives, dose reductions methods and confirmation of pregnancy requirements when fetal dose is a significant risk. Implications for practice: A national guideline ensures standardized practice can be implemented in Radiology departments, increasing clarity of the issues for both patients and MRTs.
DOCUMENT