Publinova logo

Search results

Products 2.850

product

Defining core competencies for epidemiologists in academic settings to tackle tomorrow's health research challenges

Only a few efforts have been made to define competencies for epidemiologists working in academic settings. Here we describe a multi-national effort to define competencies for epidemiologists who are increasingly facing emerging and potentially disruptive technological and societal health trends in academic research. During a 1,5 years period, we followed an iterative process that aimed to be inclusive and multi-national to reflect the various perspectives of the diverse group of epidemiologists. Competencies were developed by a consortium in a consensus-oriented process that spanned three main activities: two in-person interactive meetings in Amsterdam and Zurich and an online survey. In total, 93 meeting participants from 16 countries and 173 respondents from 19 countries contributed to the development of 31 competencies. These 31 competencies included 14 on "Developing a scientific question" and "Study planning", 12 on "Study conduct & analysis", 3 on "Overarching competencies" and 2 competencies on "Communication and translation". The process described here provides a consensus-based framework for defining and adapting the field. It should initiate a continuous process of thinking about competencies and the implications for teaching epidemiology to ensure that epidemiologists working in academic settings are well prepared for today's and tomorrow's health research.

MULTIFILE

10/26/2020
Defining core competencies for epidemiologists in academic settings to tackle tomorrow's health research challenges
product

Prevalence of questionable research practices, research misconduct and their potential explanatory factors

Prevalence of research misconduct, questionable research practices (QRPs) and their associations with a range of explanatory factors has not been studied sufficiently among academic researchers. The National Survey on Research Integrity targeted all disciplinary fields and academic ranks in the Netherlands. It included questions about engagement in fabrication, falsification and 11 QRPs over the previous three years, and 12 explanatory factor scales. We ensured strict identity protection and used the randomized response method for questions on research misconduct. 6,813 respondents completed the survey. Prevalence of fabrication was 4.3% (95% CI: 2.9, 5.7) and of falsification 4.2% (95% CI: 2.8, 5.6). Prevalence of QRPs ranged from 0.6% (95% CI: 0.5, 0.9) to 17.5% (95% CI: 16.4, 18.7) with 51.3% (95% CI: 50.1, 52.5) of respondents engaging frequently in at least one QRP. Being a PhD candidate or junior researcher increased the odds of frequently engaging in at least one QRP, as did being male. Scientific norm subscription (odds ratio (OR) 0.79; 95% CI: 0.63, 1.00) and perceived likelihood of detection by reviewers (OR 0.62, 95% CI: 0.44, 0.88) were associated with engaging in less research misconduct. Publication pressure was associated with more often engaging in one or more QRPs frequently (OR 1.22, 95% CI: 1.14, 1.30). We found higher prevalence of misconduct than earlier surveys. Our results suggest that greater emphasis on scientific norm subscription, strengthening reviewers in their role as gatekeepers of research quality and curbing the “publish or perish” incentive system promotes research integrity.

MULTIFILE

12/31/2021
Prevalence of questionable research practices, research misconduct and their potential explanatory factors
product

Documentation of assumptions and system vulnerability monitoring

PDF

12/31/2017
Documentation of assumptions and system vulnerability monitoring

People 2

person

Qiqi Zhou

Senior Researcher & Lecturer R&D

Qiqi Zhou
person

Mira Bloemen-Bekx

Professor

Projects 17

project

A roadmap for developing Data Analytic Capability for Digital Transformation

Digital transformation has been recognized for its potential to contribute to sustainability goals. It requires companies to develop their Data Analytic Capability (DAC), defined as their ability to collect, manage and analyze data effectively. Despite the governmental efforts to promote digitalization, there seems to be a knowledge gap on how to proceed, with 37% of Dutch SMEs reporting a lack of knowledge, and 33% reporting a lack of support in developing DAC. Participants in the interviews that we organized preparing this proposal indicated a need for guidance on how to develop DAC within their organization given their unique context (e.g. age and experience of the workforce, presence of legacy systems, high daily workload, lack of knowledge of digitalization). While a lot of attention has been given to the technological aspects of DAC, the people, process, and organizational culture aspects are as important, requiring a comprehensive approach and thus a bundling of knowledge from different expertise. Therefore, the objective of this KIEM proposal is to identify organizational enablers and inhibitors of DAC through a series of interviews and case studies, and use these to formulate a preliminary roadmap to DAC. From a structure perspective, the objective of the KIEM proposal will be to explore and solidify the partnership between Breda University of Applied Sciences (BUas), Avans University of Applied Sciences (Avans), Logistics Community Brabant (LCB), van Berkel Logistics BV, Smink Group BV, and iValueImprovement BV. This partnership will be used to develop the preliminary roadmap and pre-test it using action methodology. The action research protocol and preliminary roadmap thereby developed in this KIEM project will form the basis for a subsequent RAAK proposal.

Finished
project

An Integrated approach towards Recycling of Plastics

Goal: In 2030 the availability of high quality and fit-for-purpose recycled plastics has been significantly increased by implementation of InReP’s main result: Development of technologies in sorting, mechanical and chemical recycling that make high quality recycled plastics available for the two dominating polymer types; polyolefins (PE/PP) and PET. Results: Our integrated approach in the recycling of plastics will result in systemic (R1) and technological solutions for sorting & washing of plastic waste (R2), mechanical (R3) and chemical recycling (R4, R6) and upcycling (R5, R7) of polyolefins (PE & PP) and polyesters (PET). The obtained knowledge on the production of high quality recycled plastics can easily be transferred to the recycling of other plastic waste streams. Furthermore, our project aims to progress several processes (optimized sorting and washing, mechanical recycling of PP/PE, glycolysis of PET, naphtha from PP/PE and preparation of valuable monomers from PP/PET) to prototype and/or improved performance at existing pilot facilities. Our initiative will boost the attractiveness of recycling, contribute to the circular transition (technical, social, economic), increase the competitiveness of companies involved within the consortium and encourage academic research and education within this field.

Ongoing
project

Application of wastewater treatment systems to minimize the water consumption of a pulp mill located in the Rio Doce basin (WatMin).

Due to the existing pressure for a more rational use of the water, many public managers and industries have to re-think/adapt their processes towards a more circular approach. Such pressure is even more critical in the Rio Doce region, Minas Gerais, due to the large environmental accident occurred in 2015. Cenibra (pulp mill) is an example of such industries due to the fact that it is situated in the river basin and that it has a water demanding process. The current proposal is meant as an academic and engineering study to propose possible solutions to decrease the total water consumption of the mill and, thus, decrease the total stress on the Rio Doce basin. The work will be divided in three working packages, namely: (i) evaluation (modelling) of the mill process and water balance (ii) application and operation of a pilot scale wastewater treatment plant (iii) analysis of the impacts caused by the improvement of the process. The second work package will also be conducted (in parallel) with a lab scale setup in The Netherlands to allow fast adjustments and broaden evaluation of the setup/process performance. The actions will focus on reducing the mill total water consumption in 20%.

Finished