This paper aims to quantify the cumulative damage of unreinforced masonry (URM) subjected to induced seismicity. A numerical model based on discrete element method (DEM) has been develop and was able to represented masonry wall panels with and without openings; which are common typologies of domestic houses in the Groningen gas field in the Netherlands. Within DEM, masonry units were represented as a series of discrete blocks bonded together with zero-thickness interfaces, representing mortar, which can open and close according to the stresses applied on them. Initially, the numerical model has been validated against the experimental data reported in the literature. It was assumed that the bricks would exhibit linear stress-strain behaviour and that opening and slip along the mortar joints would be the predominant failure mechanism. Then, accumulated damage within the seismic response of the masonry walls investigated by means of harmonic load excitations representative of the acceleration time histories recorded during induced seismicity events that occurred in Groningen, the Netherlands.
DOCUMENT
The majority of houses in the Groningen gas field region, the largest in Europe, consist of unreinforced masonry material. Because of their particular characteristics (cavity walls of different material, large openings, limited bearing walls in one direction, etc.) these houses are exceptionally vulnerable to shallow induced earthquakes, frequently occurring in the region during the last decade. Raised by the damage incurred in the Groningen buildings due to induced earthquakes, the question whether the small and sometimes invisible plastic deformations prior to a major earthquake affect the overall final response becomes of high importance as its answer is associated with legal liability and consequences due to the damage-claim procedures employed in the region. This paper presents, for the first time, evidence of cumulative damage from available experimental and numerical data reported in the literature. Furthermore, the available modelling tools are scrutinized in terms of their pros and cons in modelling cumulative damage in masonry. Results of full-scale shake-table tests, cyclic wall tests, complex 3D nonlinear time-history analyses, single degree of freedom (SDOF) analyses and finally wall element analyses under periodic dynamic loading have been used for better explaining the phenomenon. It was concluded that a user intervention is needed for most of the SDOF modelling tools if cumulative damage is to be modelled. Furthermore, the results of the cumulative damage in SDOF models are sensitive to the degradation parameters, which require calibration against experimental data. The overall results of numerical models, such as SDOF residual displacement or floor lateral displacements, may be misleading in understanding the damage accumulation. On the other hand, detailed discrete-element modelling is found to be computationally expensive but more consistent in terms of providing insights in real damage accumulation.
DOCUMENT
This paper aims to quantify the evolution of damage in masonry walls under induced seismicity. A damage index equation, which is a function of the evolution of shear slippage and opening of the mortar joints, as well as of the drift ratio of masonry walls, was proposed herein. Initially, a dataset of experimental tests from in-plane quasi-static and cyclic tests on masonry walls was considered. The experimentally obtained crack patterns were investigated and their correlation with damage propagation was studied. Using a software based on the Distinct Element Method, a numerical model was developed and validated against full-scale experimental tests obtained from the literature. Wall panels representing common typologies of house façades of unreinforced masonry buildings in Northern Europe i.e. near the Groningen gas field in the Netherlands, were numerically investigated. The accumulated damage within the seismic response of the masonry walls was investigated by means of representative harmonic load excitations and an incremental dynamic analysis based on induced seismicity records from Groningen region. The ability of this index to capture different damage situations is demonstrated. The proposed methodology could also be applied to quantify damage and accumulation in masonry during strong earthquakes and aftershocks too.
DOCUMENT
During the 2015 Gorkha earthquake of 7.8 Mw that hit Kathmandu Valley, Nepal, numerous Nepalese Pagodas suffered extensive damage while others collapsed. Risk reduction strategies implemented in the region focused on disassembling historical structures and rebuilding them with modern material without in depth analysis of why they suffer damage and collapse. The aim of this paper is to evaluate the effectiveness of low-cost, low-intervention, reversible repair and strengthening options for the Nepalese Pagodas. As a case study, the Jaisedewal Temple, typical example of the Nepalese architectural style, was investigated. A nonlinear three-dimensional finite element model of the Jaisedewal Temple was developed and the seismic performance of the temple was assessed by undertaking linear, nonlinear static and nonlinear dynamic analyses. Also, different structural intervention options, suggested by local engineers and architects working in the restoration of temples in Nepal, were examined for their efficacy to withstand strong earthquake vibrations. Additionally, the seismic response of the exposed foundation that the Nepalese Pagodas are sitting on was investigated. From the results analysis, it was found that pushover analysis failed to capture the type of failure which highlights the necessity to perform time-history analysis to accurately evaluate the seismic response of the investigated temple. Also, stiffening the connections along the temple was found to enhance the seismic behaviour of the temple, while strengthening the plinth base was concluded to be insignificant. Outputs from this research could contribute towards the strategic planning and conservation of multi-tiered temples across Nepal and reduce their risk to future earthquake damage without seriously affecting their beautiful architectural heritage.
DOCUMENT
DOCUMENT
Ever since the recognition of the causality between earthquakes in the Region Groningen (The Netherlands), gas production and the ensuing damage to houses and buildings in that area, government faces big challenges in policy-making. On the one hand liability for damages must result in fast and effective repair of houses and buildings and in safety safeguards for the infrastructure. On the other hand public trust in governmental institutions in the Earthquake area Groningen has to be restored.As a result of the advice of the Commission ‘Sustainable Future North East Groningen’ a comprehensive package of measures called ‘Trust in restoration, Restoration of trust’ (‘Vertrouwen op herstel, Herstel van vertrouwen’) was announced in which public-private partnerships were introduced for the purpose and in favor of the economic perspective of the region, including the establishment of local initiatives on sustainable energy, damage repair and guaranteeing a confidential approach by the government.Multiple actors are involved in the execution of this package of measures, since the competence of decision-making lies at State, regional and local level. Together with the emergence of public-private partnerships this all results in a very complex case of multi-level governance and policy-making.The central research question this article addresses is whether public-private partnerships contribute in a legal and effective manner to policy-making following the package of measures ‘Trust in restoration, Restoration of trust’ in the Energy Port Region Groningen.
DOCUMENT
This paper outlines an investigation into the updating of fatigue reliability through inspection data by means of structural correlation. The proposed methodology is based on the random nature of fatigue fracture growth and the probability of damage detection and introduces a direct link between predicted crack size and inspection results. A distinct focus is applied on opportunities for utilizing inspection information for the updating of both inspected and uninspected (or uninspectable) locations.
DOCUMENT
Natural disasters are a growing concern around the globe. In the Netherlands, water has always played an important role as both friend and enemy. To quickly analyze and visualise possible disaster outcomes has been really difficult. In collaboration with engineering company Tauw we improved this modellingwith an interdisciplinary team of GIS experts, High performance computing and real time visualisation. In a pilot for the city center of Groningen we developed a 3D version of flooding landscape maps (RUG, 2014) after modelling extreme rainfall. With a flooding landscape map you can see at a glance where water isgoing and where problem areas arise in case of extreme rainfall. Any municipality or county can thus quickly determine which measures are to be taken to prevent for example disruption to traffic or flooding damage tobuildings.
DOCUMENT
Anthropology is traditionally broken into several subfields, physical/biological anthropology, social/cultural anthropology, linguistic anthropology, archaeology, and sometimes also applied anthropology. Anthropology of the environment, or environmental anthropology, is a specialization within the field of anthropology that studies current and historic human-environment interactions. Although the terms environmental anthropology and ecological anthropology are often used interchangeably, environmental anthropology is considered by some to be the applied dimension of ecological anthropology, which encompasses the broad topics of primate ecology, paleoecology, cultural ecology, ethnoecology, historical ecology, political ecology, spiritual ecology, and human behavioral and evolutionary ecology. However, according to Townsend (2009: 104), “ecological anthropology will refer to one particular type of research in environmental anthropology—field studies that describe a single ecosystem including a human population and frequently deal with a small population of only a few hundred people such as a village or neighborhood.” Kottak states that the new ecological anthropology mirrors more general changes in the discipline: the shift from research focusing on a single community or unique culture “to recognizing pervasive linkages and concomitant flows of people, technology, images, and information, and to acknowledging the impact of differential power and status in the postmodern world on local entities. In the new ecological anthropology, everything is on a larger scale” (Kottak 1999:25). Environmental anthropology, like all other anthropological subdisciplines, addresses both the similarities and differences between human cultures; but unlike other subdisciplines (or more in line with applied anthropology), it has an end goal—it seeks to find solutions to environmental damage. While in our first volume (Shoreman-Ouimet and Kopnina 2011) we criticized Kottak’s anthropocentric bias prioritizing environmental anthropology's role as a supporter of primarily people's (and particularly indigenous) interests rather than ecological evidence. In his newer 2 publication, Kottak (2010:579) states: “Today’s ecological anthropology, aka environmental anthropology, attempts not only to understand but also to find solutions to environmental problems.” And because this is a global cause with all cultures, peoples, creeds, and nationalities at stake, the contributors to this volume demonstrate that the future of environmental anthropology may be more focused on finding the universals that underlie human differences and understanding how these universals can best be put to use to end environmental damage. This is an Accepted Manuscript of a book chapter published by Routledge/CRC Press in "Environmental Anthropology: Future Directions" on 7/18/13 available online: https://doi.org/10.4324/9780203403341 LinkedIn: https://www.linkedin.com/in/helenkopnina/
MULTIFILE
DOCUMENT