It has been suggested that physical education (PE) and active transport can make a meaningful contribution to children's physical activity (PA) levels. However, data on the contribution these activities to total PA is scarce, and PE's contribution to total physical activity energy expenditure (PAEE) has to our knowledge never been determined. This is probably explained by the methodological complexity of determining PAEE (Welk, 2002). In this paper, we present the first data of an ongoing study using combined heart rate monitoring and accelerometry, together with activity diaries. Over the six measurement days, PE contributed 5% to total PAEE, and 16% to school-related PAEE, whereas active transportation had a much larger contribution.
DOCUMENT
Active transport to school is associated with higher levels of physical activity in children. Promotion of active transport has therefore gained attention as a potential target to increase children’s physical activity levels. Recent studies have recognized that the distance between home and school is an important predictor for active travel among children. These studies did not yet use the promising global positioning system (GPS) methods to objectively assess active transport. This study aims to explore active transport to school in relation to the distance between home and school among a sample of Dutch elementary school children, using GPS. Seventy-nine children, aged 6-11 years, were recruited in six schools that were located in five cities in the Netherlands. All children were asked to wear a GPS receiver for one week. All measurements were conducted between December 2008 and April 2009. Based on GPS recordings, the distance of the trips between home and school were calculated. In addition, the mode of transport (i.e., walking, cycling, motorized transport) was determined using the average and maximum speed of the GPS tracks. Then, proportion of walking and cycling trips to school was determined in relation to the distance between home and school. Out of all school trips that were recorded (n = 812), 79.2% were classified as active transport. On average, active commuting trips were of a distance of 422 meters with an average speed of 5.2 km/hour. The proportion of walking trips declined significantly at increased school trip distance, whereas the proportion of cycling trips (β = 1.23, p < 0.01) and motorized transport (β = 3.61, p < 0.01) increased. Almost all GPS tracks less than 300 meters were actively commuted, while of the tracks above 900 meters, more than half was passively commuted. In the current research setting, active transport between home and school was the most frequently used mode of travel. Increasing distance seems to be associated with higher levels of passive transport. These results are relevant for those involved in decisions on where to site schools and residences, as it may affect healthy behavior among children. https://doi.org/10.1186/1471-2458-14-227 LinkedIn: https://www.linkedin.com/in/sanned/
MULTIFILE
Background: The built environment is increasingly recognized as a determinant for health and health behaviors. Existing evidence regarding the relationship between environment and health (behaviors) is varying in significance and magnitude, and more high-quality longitudinal studies are needed. The aim of this study was to evaluate the effects of a major urban redesign project on physical activity (PA), sedentary behavior (SB), active transport (AT), health-related quality of life (HRQOL), social activities (SA) and meaningfulness, at 29–39 months after opening of the reconstructed area. Methods: PA and AT were measured using accelerometers and GPS loggers. HRQOL and sociodemographic characteristics were assessed using questionnaires. In total, 241 participants provided valid data at baseline and follow-up. We distinguished three groups, based on proximity to the intervention area: maximal exposure group, minimal exposure group and no exposure group. Results: Both the maximal and minimal exposure groups showed significantly different trends regarding transportbased PA levels compared to the no exposure group. In the exposure groups SB decreased, while it increased in the no exposure group. Also, transport-based light intensity PA remained stable in the exposure groups, while it significantly decreased in the no exposure group. No intervention effects were found for total daily PA levels. Scores on SA and meaningfulness increased in the maximal exposure group and decreased in the minimal and no exposure group, but changes were not statistically significant. Conclusion: The results of this study emphasize the potential of the built environment in changing SB and highlights the relevance of longer-term follow-up measurements to explore the full potential of urban redesign projects.
DOCUMENT
The Dutch Environmental Vision and Mobility Vision 2050 promote climate-neutral urban growth around public transport stations, envisioning them as vibrant hubs for mobility, community, and economy. However, redevelopment often increases construction, a major CO₂ contributor. Dutch practice-led projects like 'Carbon Based Urbanism', 'MooiNL - Practical guide to urban node development', and 'Paris Proof Stations' explore integrating spatial and environmental requirements through design. Design Professionals seek collaborative methods and tools to better understand how can carbon knowledge and skills be effectively integrated into station area development projects, in architecture and urban design approaches. Redeveloping mobility hubs requires multi-stakeholder negotiations involving city planners, developers, and railway managers. Designers act as facilitators of the process, enabling urban and decarbonization transitions. CARB-HUB explores how co-creation methods can help spatial design processes balance mobility, attractiveness, and carbon neutrality across multiple stakeholders. The key outputs are: 1- Serious Game for Co-Creation, which introduces an assessment method for evaluating the potential of station locations, referred to as the 4P value framework. 2-Design Toolkit for Decarbonization, featuring a set of Key Performance Indicators (KPIs) to guide sustainable development. 3- Research Bid for the DUT–Driving Urban Transitions Program, focusing on the 15-minute City Transition Pathway. 4- Collaborative Network dedicated to promoting a low-carbon design approach. The 4P value framework offers a comprehensive method for assessing the redevelopment potential of station areas, focusing on four key dimensions: People, which considers user experience and accessibility; Position, which examines the station's role within the broader transport network; Place-making, which looks at how well the station integrates into its surrounding urban environment; and Planet, which addresses decarbonization and climate adaptation. CARB-HUB uses real cases of Dutch stations in transition as testbeds. By translating abstract environmental goals into tangible spatial solutions, CARB-HUB enables scenario-based planning, engaging designers, policymakers, infrastructure managers, and environmental advocates.
The livability of the cities and attractiveness of our environment can be improved by smarter choices for mobility products and travel modes. A change from current car-dependent lifestyles towards the use of healthier and less polluted transport modes, such as cycling, is needed. With awareness campaigns, cycling facilities and cycle infrastructure, the use of the bicycle will be stimulated. But which campaigns are effective? Can we stimulate cycling by adding cycling facilities along the cycle path? How can we design the best cycle infrastructure for a region? And what impact does good cycle infrastructure have on the increase of cycling?To find answers for these questions and come up with a future approach to stimulate bicycle use, BUas is participating in the InterReg V NWE-project CHIPS; Cycle Highways Innovation for smarter People transport and Spatial planning. Together with the city of Tilburg and other partners from The Netherlands, Belgium, Germany and United Kingdom we explore and demonstrate infrastructural improvements and tackle crucial elements related to engaging users and successful promotion of cycle highways. BUas is responsible for the monitoring and evaluation of the project. To measure the impact and effectiveness of cycle highway innovations we use Cyclespex and Cycleprint.With Cyclespex a virtual living lab is created which we will use to test several readability and wayfinding measures for cycle infrastructure. Cyclespex gives us the opportunity to test different scenario’s in virtual reality that will help us to make decisions about the final solution that will be realized on the cycle highway. Cycleprint will be used to develop a monitoring dashboard where municipalities of cities can easily monitor and evaluate the local bicycle use.
There is increasing interest for the use of Virtual Reality (VR) in the field of sustainable transportation and urban development. Even though much has been said about the opportunities of using VR technology to enhance design and involve stakeholders in the process, implementations of VR technology are still limited. To bridge this gap, the urban intelligence team of NHTV Breda University of Applied Sciences developed CycleSPEX, a Virtual Reality (VR) simulator for cycling. CycleSpex enables researchers, planners and policy makers to shape a variety of scenarios around knowledge- and design questions and test their impact on users experiences and behaviour, in this case (potential) cyclists. The impact of infrastructure enhancements as well as changes in the surrounding built environment can be tested, analysed an evaluated. The main advantage for planners and policy makers is that the VR environment enables them to test scenarios ex-ante in a safe and controlled setting.“The key to a smart, healthy and safe urban environment lies in engaging mobility. Healthy cities are often characterized by high quality facilities for the active modes. But what contributes to a pleasant cycling experience? CycleSPEX helps us to understand the relations between cyclists on the move and (designed) urban environments”