Rationale To improve the quality of exercise-based cardiac rehabilitation (CR) in patients with chronic heart failure (CHF) a practice guideline from the Dutch Royal Society for Physiotherapy (KNGF) has been developed. Guideline development A systematic literature search was performed to formulate conclusions on the efficacy of exercise-based intervention during all CR phases in patients with CHF. Evidence was graded (1–4) according the Dutch evidence-based guideline development criteria. Clinical and research recommendations Recommendations for exercise-based CR were formulated covering the following topics: mobilisation and treatment of pulmonary symptoms (if necessary) during the clinical phase, aerobic exercise, strength training (inspiratory muscle training and peripheral muscle training) and relaxation therapy during the outpatient CR phase, and adoption and monitoring training after outpatient CR. Applicability and implementation issues This guideline provides the physiotherapist with an evidence-based instrument to assist in clinical decision-making regarding patients with CHF. The implementation of the guideline in clinical practice needs further evaluation. Conclusion This guideline outlines best practice standards for physiotherapists concerning exercise-based CR in CHF patients. Research is needed on strategies to improve monitoring and follow-up of the maintenance of a physical active lifestyle after supervised CR.
The aim of this analysis was to compare ventilation management and outcomes in invasively ventilated patients with acute hypoxemic respiratory failure due to coronavirus disease 2019 (COVID-19) between the first and second wave in the Netherlands. This is a post hoc analysis of two nationwide observational COVID-19 studies conducted in quick succession. The primary endpoint was ventilation management. Secondary endpoints were tracheostomy use, duration of ventilation, intensive care unit (ICU) and hospital length of stay (LOS), and mortality. We used propensity score matching to control for observed confounding factors. This analysis included 1122 patients from the first and 568 patients from the second wave. Patients in the second wave were sicker, had more comorbidities, and had worse oxygenation parameters. They were ventilated with lower positive end-expiratory pressure and higher fraction inspired oxygen, had a lower oxygen saturation, received neuromuscular blockade more often, and were less often tracheostomized. Duration of ventilation was shorter, but mortality rates were similar. After matching, the fraction of inspired oxygen was lower in the second wave. In patients with acute hypoxemic respiratory failure due to COVID-19, aspects of respiratory care and outcomes rapidly changed over the successive waves.
Skeletal muscle-related symptoms are common in both acute coronavirus disease (Covid)-19 and post-acute sequelae of Covid-19 (PASC). In this narrative review, we discuss cellular and molecular pathways that are affected and consider these in regard to skeletal muscle involvement in other conditions, such as acute respiratory distress syndrome, critical illness myopathy, and post-viral fatigue syndrome. Patients with severe Covid-19 and PASC suffer from skeletal muscle weakness and exercise intolerance. Histological sections present muscle fibre atrophy, metabolic alterations, and immune cell infiltration. Contributing factors to weakness and fatigue in patients with severe Covid-19 include systemic inflammation, disuse, hypoxaemia, and malnutrition. These factors also contribute to post-intensive care unit (ICU) syndrome and ICU-acquired weakness and likely explain a substantial part of Covid-19-acquired weakness. The skeletal muscle weakness and exercise intolerance associated with PASC are more obscure. Direct severe acute respiratory syndrome coronavirus (SARS-CoV)-2 viral infiltration into skeletal muscle or an aberrant immune system likely contribute. Similarities between skeletal muscle alterations in PASC and chronic fatigue syndrome deserve further study. Both SARS-CoV-2-specific factors and generic consequences of acute disease likely underlie the observed skeletal muscle alterations in both acute Covid-19 and PASC.