This paper reports on a study of adaptability of organizations and how that relates to their ability to generate innovations. Constructs from an organizational culture model and the innovation value chain was used as the foundation for a cross-sectional study in 7 organizations in Ireland. The findings reveal that adaptability is indeed related to innovativeness. Organizations that are good at creating change, learning, and creativity are better able to generate new ideas. In addition organizations that are also flexible can convert these ideas into outputs and subsequently disseminate them internally as well as outside the organization.
DOCUMENT
In clinical practice, formal elements of art products are regularly used in art therapy observation to obtain insight into clients’ mental health and provide directions for further treatment. Due to the diversity of formal elements used in existing studies and the inconsistency in the interpretation, it is unclear which formal elements contribute to insight into clients’ mental health. In this qualitative study using Constructivist Grounded Theory, eight art therapists were interviewed in-depth to identify which formal elements they observe, how they describe mental health and how they associate formal elements with mental health. Findings of this study show that art therapists in this study observe the combination of movement, dynamic, contour and repetition (i.e., primary formal elements) with mixture of color, figuration and color saturation (i.e., secondary formal elements). Primary and secondary elements interacting together construct the structure and variation of the art product. Art therapists rarely interpret these formal elements in terms of symptoms or diagnosis. Instead, they use concepts such as balance and adaptability (i.e., self-management, openness, flexibility, and creativity). They associate balance, specifically being out of balance, with the severity of the clients’ problem and adaptability with clients’ strengths and resources. In the conclusion of the article we discuss the findings’ implications for practice and further research.
DOCUMENT
Triggered by recent flood catastrophes and increasing concerns about climate change, scientists as well as policy-makers increasingly call for making long-term water policies to enable a transformation towards flood resilience. A key question is how to make these long-term policies adaptive so that they are able to deal with uncertainties and changing circumstances. The paper proposes three conditions for making long-term water policies adaptive, which are then used to evaluate a new Dutch water policy approach called 'Adaptive Delta Management'. Analysing this national policy approach and its translation to the Rotterdam region reveals that Dutch policy-makers are torn between adaptability and the urge to control. Reflecting on this dilemma, the paper suggests a stronger focus on monitoring and learning to strengthen the adaptability of long-term water policies. Moreover, increasing the adaptive capacity of society also requires a stronger engagement with local stakeholders including citizens and businesses.
DOCUMENT
Renewable energy, particularly offshore wind turbines, plays a crucial role in the Netherlands' and EU energy-transition-strategies under the EU Green Deal. The Dutch government aims to establish 75GW offshore wind capacity by 2050. However, the sector faces human and technological challenges, including a shortage of maintenance personnel, limited operational windows due to weather, and complex, costly logistics with minimal error tolerance. Cutting-edge robotic technologies, especially intelligent drones, offer solutions to these challenges. Smaller drones have gained prominence through applications identifying, detecting, or applying tools to various issues. Interest is growing in collaborative drones with high adaptability, safety, and cost-effectiveness. The central practical question from network partners and other stakeholders is: “How can we deploy multiple cooperative drones for maintenance of wind turbines, enhancing productivity and supporting a viable business model for related services?” This is reflected in the main research question: "Which drone technologies need to be developed to enable collaborative maintenance of offshore wind turbines using multiple smaller drones, and how can an innovative business model be established for these services? In collaboration with public and private partners, Saxion, Hanze, and RUG will research the development of these collaborative drones and investigate the technology’s potential. The research follows a Design Science Research methodology, emphasizing solution-oriented applied research, iterative development, and rigorous evaluation. Key technological building blocks to be developed: • Morphing drones, • Intelligent mechatronic tools, • Learning-based adaptive interaction controllers and collaborations. To facilitate the sustainable industrial uptake of the developed technologies, appropriate sustainable business models for these technologies and services will be explored. The project will benefit partners by enhancing their operations and business. It will contribute to renewing higher professional education and may lead to the creation of spin-offs/spinouts which bring this innovative technology to the society, reinforcing the Netherlands' position as a leading knowledge economy.
Nowadays, there is particular attention towards the additive manufacturing of medical devices and instruments. This is because of the unique capability of 3D printing technologies for designing and fabricating complex products like bone implants that can be highly customized for individual patients. NiTi shape memory alloys have gained significant attention in various medical applications due to their exceptional superelastic and shape memory properties, allowing them to recover their original shape after deformation. The integration of additive manufacturing technology has revolutionized the design possibilities for NiTi alloys, enabling the fabrication of intricately designed medical devices with precise geometries and tailored functionalities. The AM-SMART project is focused on exploring the suitability of NiTi architected structures for bone implants fabricated using laser powder bed fusion (LPBF) technology. This is because of the lower stiffness of NiTi alloys compared to Ti alloys, closely aligning with the stiffness of bone. Additionally, their unique functional performance enables them to dissipate energy and recover the original shape, presenting another advantage that makes them well-suited for bone implants. In this investigation, various NiTi-based architected structures will be developed, featuring diverse cellular designs, and their long-term thermo-mechanical performance will be thoroughly evaluated. The findings of this study underscore the significant potential of these structures for application as bone implants, showcasing their adaptability for use also beyond the medical sector.
City labs are a promising form of smart governance, providing a ‘smart interface’ between public and private actors, including citizens, through co-creation. Recent scholarship sees ‘experimentation’ - implementing projects with the goal to learn rather than to achieve a predetermined outcome – as a key feature of city labs and their contribution to the adaptability of an urban region. However, in practice, city lab practitioners struggle with this role and need guidance on how to set up, carry out and learn from experiments. TEK4Labs aims to enhance scientific understanding of the conditions required for city labs to take up their experimental role in governance successfully, as well as to provide practical guidance for city labs by developing an ‘experiment kit’. The project will take a transdisciplinary action research approach, combining literature review, survey and interview methods with co-creation design workshops and field testing involving city lab practitioners. TEK4Labs will be carried out by ICIS-UM researchers in collaboration with Stimuleringsfonds Creatieve Industrie and its network of Dutch city labs.