This paper is a summary paper of the Thematic Working Group (TWG) on Adult Mathematics Education (AME). As the only thematic working group that focuses on adults’ lived experiences of mathematics, the research makes an important contribution to the field of Mathematics Education. The main themes in this group identify that adult numerical behaviour goes beyond the mathematics skills, knowledge, and procedures taught in formal education It is multifaceted, requiring the use of higher order skills of analysis and judgement, applied within a broad array of life’s contexts, experienced through a range of emotions. The research in this group points to the need to raise the profile of research that shows the benefits to adults of learning mathematics but also the long term economic disbenefits in the neglect of teaching and teacher training for this group.
DOCUMENT
This paper is a summary paper of the Thematic Working Group (TWG) on Adult Mathematics Education (AME). The theme AME made its first appearance on CERME11 and in this paper we provide an overview of the growing and blossoming field of AME and the results of the working group. The main themes associated with AME are: the definition, scope, and assessment of numeracy, the role of language and dialogue, the role of affect, including motivation, and the role of societal power structures, including subthemes like equity, inclusion, vulnerable learners, agency and self-efficacy. We conclude with the opportunities and challenges for this theme from both scientific and societal perspective.
LINK
Numeracy and mathematics education in vocational education is under pressure to keep up with the rapid changes in the workplace due to developments in workplace mathematics and the ubiquitous availability of technological tools. Vocational education is a large stream in education for 12- to 20-years-olds in the Netherlands and the numeracy and mathematics curriculum is on the brink of a reform. To assess what is known from research on numeracy in vocational education, we are in the process of conducting a systematic review of the international scientific literature of the past five years to get an overview of the recent developments and to answer research questions on the developments in vocational educational practices. The work is still in progress. We will present preliminary and global results. We see vocational education from the perspective of (young) adults learning mathematics.
LINK
The aim of this paper is to present materials designed for adult numeracy training. In the successive Erasmus+ projects, "The Common European Numeracy Framework" (2018-2021) and "Numeracy in Practice" (2022-2024), professional development modules have been designed for teachers specialising in adult numeracy education. The primary objective of these modules is to enhance teacher awareness of the competencies required for teaching numeracy and to address the changing demands of numeracy in adults’ personal and professional lives.
DOCUMENT
Proceedings of the 24th International Conference of Adults Learning Mathematics – A Research Forum (ALM).
DOCUMENT
This work draws on the Programme for the International Assessment of Adult Competencies (PIAAC) survey. Last year a first review was conducted on the PIAAC Numeracy Framework (Tout. et al., 2017). In 2018 and 2019 the framework for the second cycle of PIAAC will be developed. This second cycle of the PIAAC survey aims to update the data about the numeracy skills of adults in different countries around the World (Hoogland, Díez-Palomar, Maguire, 2019). The objective of this paper is to highlight some relevant findings from literature on the concept numeracy in order to discuss a potential enrichment of the PIAAC Numeracy Assessment Framework (NAF).
LINK
This paper explores the contributions of research to the field of adults learning mathematics (ALM) in the last twenty years. The results of the review of the literature on ALM show that the most cited studies that have been published in the last twenty years tend to focus on the field of numeracy to understand health data (such as understanding how to dose a medicine in a medical treatment). However, we know little about key aspects of how adults learn mathematics, what obstacles they encounter, and how they overcome them. This paper identifies the main gaps that ALM research faces in the coming years.
DOCUMENT
We are well into the 21st century now and the urgency for lifelong learning is growing especially regarding numeracy. There are major societal and policy pressures on education to prepare citizens for a complex and technologized society, in literature referred to as “21st century skills” (Voogt & ParejaRoblin, 2012), “global competences” (OECD, 2016a) or “the 4th industrial revolution” (Schwab, 2016). International research has demonstrated the economic and social value of literacy and numeracy knowledge and skills (Hanushek and Wöbmann, 2012; Grotlüschen, et al. 2016). With respect to numeracy (and/or mathematics) education, we explore the implications of these pressures to the mathematical demands at individuals living and working in modern life, and what is expected from numeracy education as society moves further into the 21st century. New means of communication and types of services have changed the way individuals interact with governments, institutions, services and each other, and social and economic transformations have in turn, changed the nature of the demand for skills as well.
DOCUMENT
In this chapter, I look back at the implementation of W12-16, a major reform of mathematics education in the lower grades of general secondary education and pre-vocational secondary education in the Netherlands including all students aged 12–16. The nationwide implementation of W12-16 started in 1990 and envisioned a major change in what and how mathematics was taught and learned. The content was broadened from algebra and geometry to algebra, geometry and measurement, numeracy, and data processing and statistics. The learning trajectories and the instruction theory were based on the ideas of Realistic Mathematics Education (RME): the primary processes used in the classroom were to be guided re-invention and problem solving. ‘Ensuring usability’ in the title of this chapter refers to the aim of the content being useful and understandable for all students, but also to the involvement of all relevant stakeholders in the implementation project, including teachers, students, parents, editors, curriculum and assessment developers, teacher educators, publishers, media and policy makers. Finally, I reflect on the current state of affairs more than 20 years after the nationwide introduction. The main questions to be asked are: Have the goals been reached? Was the implementation successful?
LINK
Technology, data use, and digitisation are based on mathematical structures, and this permeates many aspects of our daily lives: apps, online activities, and all kinds of communication. Equipping people to deal with this mathematisation of society is a big challenge. Which competences are needed, which skills must be mastered? Which dispositions are helpful? These are the questions that matter in the development of adult education. The concept of numeracy is mentioned already for many years as a possible useful approach to equip adults with the necessary skills. In this paper we will argue that is only true when numeracy is defined as a multifaceted concept which combines knowledges, skills, higher order skills, context and dispositions.
DOCUMENT