In the Netherlands there is discussion about the best way to teach mathematics, especially in the case of primary school students. Being able to identify and understand pupils’ multiple problem solving strategies is one of the pillars of pedagogy. However, it is very demanding for teachers, since it requires to notice and analyze pupils’ mathematical thinking and to understanding their actions. The skill to notice and analyze a student’s mathematical thinking is usually not emphasized in Dutch primary school teacher training. It is important to find ways to help teacher-students to analyze student mathematical reasoning, and to learn to recognize the importance of such analysis. Sherin and van Es used the concept of video clubs to help teachers in US schools to notice and analyze their students’ mathematical thinking. In such video clubs, students jointly discuss their filmed lessons. This leads to the following research question:How can video clubs be used to teach students who are learning to become primary school teachers to analyze their pupils’ mathematical thinking and to learn to recognize the importance of such analysis?This paper describes a study that monitors a video club with four participants.
LINK
Technology, data use, and digitisation are based on mathematical structures, and this permeates many aspects of our daily lives: apps, online activities, and all kinds of communication. Equipping people to deal with this mathematisation of society is a big challenge. Which competences are needed, which skills must be mastered? Which dispositions are helpful? These are the questions that matter in the development of adult education. The concept of numeracy is mentioned already for many years as a possible useful approach to equip adults with the necessary skills. In this paper we will argue that is only true when numeracy is defined as a multifaceted concept which combines knowledges, skills, higher order skills, context and dispositions.
We are well into the 21st century now and the urgency for lifelong learning is growing especially regarding numeracy. There are major societal and policy pressures on education to prepare citizens for a complex and technologized society, in literature referred to as “21st century skills” (Voogt & ParejaRoblin, 2012), “global competences” (OECD, 2016a) or “the 4th industrial revolution” (Schwab, 2016). International research has demonstrated the economic and social value of literacy and numeracy knowledge and skills (Hanushek and Wöbmann, 2012; Grotlüschen, et al. 2016). With respect to numeracy (and/or mathematics) education, we explore the implications of these pressures to the mathematical demands at individuals living and working in modern life, and what is expected from numeracy education as society moves further into the 21st century. New means of communication and types of services have changed the way individuals interact with governments, institutions, services and each other, and social and economic transformations have in turn, changed the nature of the demand for skills as well.