Optimization of aviation maintenance, repair, and overhaul (MRO) operations has been of high interest in recent years for both the knowledge institutions and the industrial community as a total of approximately $70 billion has been spent on MRO activities in 2018 which represents around 10% of an airline’s annual operational cost (IATA, 2019). Moreover, the aircraft MRO tasks vary from routine inspections to heavy overhauls and are typically characterized by unpredictable process times and material requirements. Especially nowadays due to the unprecedent COVID-19 crisis, the aviation sector is facing significant challenges, and the MRO companies strive to strengthen their competitive position and respond to the increasing demand for more efficient, cost-effective, and sustainable processes. Currently, most maintenance strategies employ preventive maintenance as an industrial standard, which is based on fixed and predetermined schedules. Preventive maintenance is a long-time preferred strategy, due to increased flight safety and relatively simple implementation (Phillips et al., 2010). However, its main drawback stems from the fact that the actual time of failure and the replacement interval of a component are hard to predict resulting in an inevitable suboptimal utilization of material and labor. This has two repercussions: first, the reduced availability of assets, the reduced capacity of maintenance facilities, and the increased costs for both the MRO provider and the operator. Second, the increased waste from an environmental standpoint, as the suboptimal use of assets, is also associated with wasted remaining lifetime for aircraft parts which are replaced, while this isn’t yet necessary (e.g., Nguyen et al., 2019).The recently introduced, condition-based maintenance (CBM) and predictive maintenance (PdM) data-driven strategies aim to reduce maintenance costs, maxi-mize availability, and contribute to sustainable operations by offering tailored pro-grams that can potentially result in optimally planned, just-in-time maintenance meaning reduction in material waste and unneeded inspections.
Marketing Analytics provides guidelines in the application of statistics using IBM SPSS Statistics Software (SPSS) for students and professionals using quantitative methods in marketing and consumer behavior. With simple language and a practical, screenshot-led approach, the book presents 11 multivariate techniques and the steps required to perform analysis. Each chapter contains a brief description of the technique, followed by the possible marketing research applications. One of these applications is then used in detail to illustrate its applicability in a research context, including the needed SPSS commands and illustrations. Each chapter also includes practical exercises that require the readers to perform the technique and interpret the results, equipping students with the necessary skills to apply statistics by means of SPSS in marketing and consumer research. Finally, there is a list of articles employing the technique that can be used for further reading.This textbook provides introductory material for advanced undergraduate and postgraduate students studying marketing and consumer analytics, teaching methods along with practical software-applied training using SPSS. Support material includes two real data sets to illustrate the techniques’ applications and PowerPoint slides providing a step-by-step guide to the analysis and commented outcomes. Professionals are invited to use the book to select and use the appropriate analytics for their specific context.
ObjectivesDecision-making for patients with a locally advanced laryngeal carcinoma (T3 and T4) is challenging due to the treatment choice between organ preservation and laryngectomy, both with different and high impact on function and quality of life (QoL). The complexity of these treatment decisions and their possible consequences might lead to decisional conflict (DC). This study aimed to explore the level of DC in locally advanced laryngeal carcinoma patients facing curative decision-making, and to identify possible associated factors.MethodsIn this multicenter prospective cohort study, participants completed questionnaires on DC, level of shared decision-making (SDM), and a knowledge test directly after counseling and 6 months after treatment. Descriptive statistics and Spearman correlation tests were used to analyze the data.ResultsDirectly after counseling, almost all participants (44/45; 98%) experienced Clinically Significant DC score (CSDC >25, scale 0–100). On average, patients scored 47% (SD 20%) correct on the knowledge test. Questions related to radiotherapy were answered best (69%, SD 29%), whilst only 35% (SD 29%) of the questions related to laryngectomy were answered correctly. Patients' perceived level of SDM (scale 0–100) was 70 (mean, SD 16.2), and for physicians this was 70 (SD 1.7).ConclusionMost patients with advanced larynx cancer experience high levels of DC. Low knowledge levels regarding treatment aspects indicate a need for better patient counseling.Level of Evidence4 Laryngoscope, 134:3604–3610, 2024
MULTIFILE
In the last decade, the automotive industry has seen significant advancements in technology (Advanced Driver Assistance Systems (ADAS) and autonomous vehicles) that presents the opportunity to improve traffic safety, efficiency, and comfort. However, the lack of drivers’ knowledge (such as risks, benefits, capabilities, limitations, and components) and confusion (i.e., multiple systems that have similar but not identical functions with different names) concerning the vehicle technology still prevails and thus, limiting the safety potential. The usual sources (such as the owner’s manual, instructions from a sales representative, online forums, and post-purchase training) do not provide adequate and sustainable knowledge to drivers concerning ADAS. Additionally, existing driving training and examinations focus mainly on unassisted driving and are practically unchanged for 30 years. Therefore, where and how drivers should obtain the necessary skills and knowledge for safely and effectively using ADAS? The proposed KIEM project AMIGO aims to create a training framework for learner drivers by combining classroom, online/virtual, and on-the-road training modules for imparting adequate knowledge and skills (such as risk assessment, handling in safety-critical and take-over transitions, and self-evaluation). AMIGO will also develop an assessment procedure to evaluate the impact of ADAS training on drivers’ skills and knowledge by defining key performance indicators (KPIs) using in-vehicle data, eye-tracking data, and subjective measures. For practical reasons, AMIGO will focus on either lane-keeping assistance (LKA) or adaptive cruise control (ACC) for framework development and testing, depending on the system availability. The insights obtained from this project will serve as a foundation for a subsequent research project, which will expand the AMIGO framework to other ADAS systems (e.g., mandatory ADAS systems in new cars from 2020 onwards) and specific driver target groups, such as the elderly and novice.