In this paper, we explore the design of web-based advice robots to enhance users' confidence in acting upon the provided advice. Drawing from research on algorithm acceptance and explainable AI, we hypothesise four design principles that may encourage interactivity and exploration, thus fostering users' confidence to act. Through a value-oriented prototype experiment and valueoriented semi-structured interviews, we tested these principles, confirming three of them and identifying an additional principle. The four resulting principles: (1) put context questions and resulting advice on one page and allow live, iterative exploration, (2) use action or change oriented questions to adjust the input parameters, (3) actively offer alternative scenarios based on counterfactuals, and (4) show all options instead of only the recommended one(s), appear to contribute to the values of agency and trust. Our study integrates the Design Science Research approach with a Value Sensitive Design approach.
DOCUMENT
Learning Analytics en bias – Learning analytics richt zich op het meten en analyseren van studentgegevens om onderwijs te verbeteren. Bakker onderscheidt hierin verschillende niveaus, zoals student analytics en institutional analytics, en focust op inclusion analytics, waarin gekeken wordt naar kansengelijkheid. Bias – systematische vooroordelen in data – kan vooroordelen in algoritmen versterken en zo kansenongelijkheid veroorzaken. De onderzoeksmethode maakt gebruik van het 4/5-criterium, waarbij fairness in uitkomsten gemeten wordt door te kijken of de kansen voor de beschermde groep minstens 80% zijn van die van de bevoorrechte groep.Onderzoeksaanpak – Bakker gebruikt machine learning om retentie na het eerste studiejaar te voorspellen en onderzoekt vervolgens verschillen tussen groepen studenten, zoals mbo-en vwo-studenten. Hij volgt drie stappen: (1) Data voorbereiden en modellen bouwen: Data worden opgesplitst en opgeschoond om accurate voorspelmodellen te maken. (2) Variabelen analyseren: Invloed van kenmerken op uitkomsten wordt beoordeeld voor verschillende groepen. (3) Fairness berekenen: Het 4/5-criterium wordt toegepast op metrics zoals accuraatheid en statistische gelijkheid om bias en ongelijkheden te identificeren. Resultaten, aanbevelingen en vervolgonderzoek – Uit het onderzoek blijkt dat kansengelijkheid bij veel opleidingen ontbreekt, met name voor mannen en mbo-studenten, die een hogere kans op uitval hebben. Bakker adviseert sensitieve kenmerken zoals migratieachtergrond mee te nemen in analyses op basis van informed consent. Daarnaast pleit hij voor meer flexibiliteit in het beleid, geïnspireerd door maatregelen tijdens de coronacrisis, die een positief effect hadden op studiesucces.Toekomstvisie – Bakker benadrukt dat niet elke ongelijkheid het gevolg is van discriminatie en roept op tot data-informed interventies om sociale rechtvaardigheid in het onderwijs te bevorderen. Zijn methode wordt open access beschikbaar gesteld, zodat ook andere instellingen deze kunnen toepassen en kansengelijkheid systematisch en bewust kunnen onderzoeken.
DOCUMENT
De uitdagingen voor de (toekomstige) professionals zijn groot. Voor de innovatie van juridische dienstverlening en de morele dillema’s binnen de juridische beroepspraktijk, zijn hbo’ers nodig die verder kunnen kijken dan de regels en de toepassing ervan; mensen die altijd de mens blijven zien en horen en kunnen reflecteren op hun professioneel handelen. Er zijn meer toegankelijke en rechtvaardige oplossingen nodig die zorgen voor de toegang tot recht. Dat vergt behalve het kunnen inleven in mensen ook maatwerk, praktische wijsheid en creatief denken. Waarbij praktische wijsheid staat voor het zoeken naar antwoorden in concrete situaties waarvoor geen standaardantwoorden uit regelgeving, leerboeken en protocollen te vinden zijn
DOCUMENT