Uitgebreide online versie. Met dit voorbeeldenboek laten we zien hoe een straat klimaatbestendig ingericht kan worden, wat een klimaatbestendige inrichting kost, maar vooral ook wat de voordelen zijn. Voor karakteristieke - en voor veel gemeenten herkenbare - straten hebben we telkens vier inrichtingsmogelijkheden uitgewerkt met de bijbehorende kosten en baten. Naast de algemene overeenkomsten die straten van eenzelfde wijktypologie hebben, kunnen er ook lokale verschillen zijn waardoor klimaatadaptatie niet op eenzelfde manier kan worden ingevuld. Het gaat hier om het maaiveldverloop, de bodemopbouw en de grondwaterstanden. Naast de investeringskosten zijn de onderhoudskosten en kosten als gevolg van eventuele waterschade meegenomen.
MULTIFILE
Infiltratie van afstromend regenwater is één van de methoden om regenwater van het rioolstelsel af te koppelen of niet aan te sluiten. In dit artikel worden aanzetten gemaakt voor het opstellen van enkele richtlijnen voor infiltratievoorzieningen en hun achtergrond wordt weergegeven. Hiervoor is onder meer gebruik gemaakt van meetresultaten van infiltratievoorzieningen in Nederland (Eindhoven en Renkum). Uiteindelijk worden een aantal conclusies en aanbevelingen op een rij gezet
DOCUMENT
Klimaatadaptatie staat in Nederland hoog op de agenda en vraagt om eenandere inrichting van de openbare ruimte. Grote regenbuien passen niet inrioolbuizen dus wordt verharding vervangen door groen. Groenvoorzieningenkrijgen functies als waterberging en infiltreren regenwater in de bodem,zoals bij wadi’s (water afvoer drainage en infiltratie). Het afstromendregenwater dat infiltreert bevat verontreinigingen zoals PAK en zwaremetalen die in de toplaag van de wadi worden afgevangen. De concentratieszijn echter zo laag dat vervuiling pas na jaren meetbaar is.
DOCUMENT
Het doel van dit project is het onderzoeken of CO2 en kosten kunnen worden gereduceerd in twee zorginstellen door het Specifiek Ziekenhuis Afval (SZA) anders te verzamelen en verwerken. Dit praktijkgerichte onderzoek wordt mogelijk door een samenwerking van Windesheim, Flynther, Dermatologisch Centrum en Isala. SZA wordt verzameld in speciale vaten en getransporteerd naar speciale verbrandingsovens in Dordrecht, waar het afval inclusief het vat onder hoge temperatuur wordt verbrand. Dit leidt tot een hoge CO2 uitstoot en onnodig hoge afvalkosten voor zorgpartijen. Tijdens de voorbereidende interviews voor dit onderzoek hebben respondenten uit de zorgsector al verschillende suggesties gedaan om de hoeveelheid afval te reduceren: • Alleen medisch afval in het vat stoppen, geen andere afvalstromen; • Vaten zo veel mogelijk vullen voordat deze worden vervangen; • Beter scheiden van SZA. Een deel van het SZA hoeft niet onder speciale omstandigheden te worden verbrand, door deze apart in te zamelen kan het in de buurt van de zorginstelling worden vernietigd in plaats van in Dordrecht. • Gebruik van andere soorten vaten die gemaakt zijn uit karton of dunner kunststof. Vanuit Flynther en het Dermatologisch centrum is de praktijkvraag; “Als door diverse partijen wordt aangegeven dat er kan worden bespaard, waarom hebben partijen uit de zorg hier dan geen of nauwelijks aandacht voor? Zijn er nog meer manieren om SZA te reduceren?” De praktijkvraag van dit onderzoek is:Op welke wijze kunnen zorginstellingen door aanpassingen in het inzamelen van SZA, de hoeveelheid CO2 uitstoot en kosten binnen deze afvalstoom reduceren?Om deze vraag te beantwoorden worden de mogelijkheden zoals hierboven beschreven getoetst en de impact bepaald. Daarnaast wordt gekeken hoe het SZA inzamelingsproces moet worden aangepast om deze besparing te realiseren. Ook wordt onderzocht wat beperkende factoren zijn voor deze besparingen. De onderzoeksvragen worden beantwoord door een verkennend onderzoek dat wordt gebaseerd op twee case studies.
Ten gevolge van de klimaatverandering Nederland bedreigt. De Verenigde Naties benoemt ‘17 Gobal Goals for a Sustainable Development’ nader gespecificeerd. Goal 13:” versterk de veerkracht en het aanpassingsvermogen aan klimaatgerelateerde gevaren en natuurrampen”. Deze klimaatverandering vraagt om een continue inzicht in de waterafvoercapaciteit van Nederlandse water-infrastructuur. Autonome vaartuigen maken een continue bemeting en realtime informatie van de vaarwegen mogelijk op basis waarvan waar snel actie ondernomen kan worden. Diverse partijen zowel publiek als privaat hebben de wens om continue en autonoom te varen en zijn afzonderlijk hiermee bezig zoals onder andere Rijkswaterstaat, Saeport Groningen en Provincie Overijssel . Het lectoraat mechatronica, dat succesvol onderzoek doet naar ‘autonome systemen in ongestructureerde omgevingen’ heeft veel kennis en ervaring op het gebied van grond (2D navigatie) en lucht robots (3D navigatie). Deze ontwikkelde technologieën zijn potentieel zeer geschikt voor navigatie op het water (2D, 2.5D) en onderwater (3D). Tijdens de vraaginventarisatie bleek er reeds veel interesse van partijen om kennis te delen en samen door te ontwikkelen. Er zijn semi-autonome vaartuigen beschikbaar hiervoor, maar bij de partijen ontbrak een totaal overzicht van de huidige stand van der technologie. Daarom wil het lectoraat Mechatronica samen met Marinminds, Aquatic Drones en DronExpert een onderzoek uitvoeren naar de ‘State of the Art’ betreft autonoom varen. In dit project zal dit onderzoek worden uitgevoerd door specificatie van de gewenste functionele bouwblokken (WP1), een state-of-the art van beschikbare technische oplossingen (WP2), een Gap-analysis tussen deze beide (WP3), verkennende experimenten hiernaar met behulp van een demonstrator (WP4) en een nieuwe specifiek gemaakte projectaanvraag (WP5). Dit cross-over project van de topsector HTSM/SmartIndustry met de topsector Water & Maritiem versterkt al direct de kennispositie van alle betrokken partijen, waardoor deze consortia sneller de vaarwegen klimaat-adaptief kunnen maken, zodat daarmee de Nederlandse (water) veiligheid beter wordt geborgd.
Dit project draagt bij aan een circulair grondstoffen efficiënt systeem waarbij de baggerketen (afvoer van bagger naar depots) wordt gekoppeld aan de realisatie van dijkversterking (van grondstof naar waterkering). Momenteel wordt er in Nederland jaarlijks naar schatting 10 miljoen m3 aan bagger uit rivieren en delta’s afgevoerd naar depots. Het afvoeren van deze bagger kost nu ongeveer 10 tot 20 euro per m3. Van deze bagger is er in Nederland ruim 90% toepasbaar en naar verwachting zeer goed herbruikbaar in verschillende toepassingen bij dijkversterkingsprojecten. De komende jaren wordt ongeveer 750 km dijken versterkt in het kader van het Hoogwaterbeschermingsprogramma (HWBP), waarin Rijk en waterschappen intensief samenwerken om dijkversterkingen slimmer, sneller en beter (zowel qua kosten als qua meerwaarde) aan te pakken. Door lokaal het gebaggerde sediment te hergebruiken in dijkversterkingsprojecten, minimaliseer je de afvoer van bagger én bespaar je op de aanvoer van nieuwe grondstoffen voor het project. Omdat zowel opdrachtgevers als de aannemers vaak niet goed bekend zijn met de mogelijkheden van bouwen met bagger, wordt de kans om kostenvoordelen te behalen door baggerspecie toe te passen vaak gemist. Met dit onderzoek wordt gestreefd om opdrachtgevers en aannemers beter bewust te maken van de mogelijkheden om bagger toe te passen bij dijkversterkingsprojecten. Daarom richt het zich voornamelijk op de startfase van dijkversterkingsprojecten waarin de precieze scope nog moet worden vastgesteld. In deze fase is het vooral van belang om te weten welke toepassingen er mogelijk zijn en onder welke voorwaarden. Als zodanig draagt het bij aan een transitie van bagger als afvalstof naar bagger als waardevol bouwmateriaal.