How to encourage students to choose for a future in agrifood? Not like we always did. The labor market shows an increasing shortage. The agrifood sector plays a significant role in achieving global food security and environmental sustainability. Scholars hardly realize what they can contribute to these social, ecologic and economic issues. The sector needs to expand the range of career opportunities in the agriculture-food-nutrition-environment nexus. Most importantly, it means creating incentives that encourage young people to see agrifood as one of the best options for a career choice. We developed inspiring learning materials to achieve awareness in secondary schools in the Netherlands. A Genomics Cookbook with food metaphors to explain biological principles is highly appreciated by both teachers and students. It is a way to increase influx into green colleges and universities, and thereby efflux to the agrifood sector.
MULTIFILE
The agrifood sector is crucial for achieving global food security and environmental sustainability. In the Netherlands, innovations in food technology and adjacent areas are achieved in attractive projects at Universities of Applied Sciences (UASs) in close interaction with government, industry, other knowledge institutes and society. By providing students central positions in innovative joint efforts that answer to the demands of small and medium sized enterprises, the curricula stay up to date and appealing. Examples of such efforts are the Food Innovation Academy (FIA), the World Horti Centre (WHC) and the Food Innovation Community Amsterdam (FICA). Interdisciplinary projects in these settings help to encourage students to choose for a future in agrifood. Exposure is key to reach the target groups. For that reason, several paths on the roadmap of the human capital agenda have to be taken. We developed inspiring learning materials that appeal to students and teachers in secondary schools. A “Genomics Cookbook” to introduce biological knowledge behind nutrigenomics and a velcro-model called “DNAbAND” to explain principles behind the Polymerase Chain Reaction for food safety applications, are examples. These are ways to increase influx into green colleges and universities, and thereby efflux to the agrifood sector.
DOCUMENT
Western-European consumers have become not only more demanding on product availability in retail outlets but also on other food attributes such as quality, integrity, and safety. When (re)designing food supply-chain networks, from a logistics point of view, one has to consider these demands next to traditional efficiency and responsiveness requirements. The concept ‘quality controlled logistics’ (QCL) hypothesizes that if product quality in each step of the supply chain can be predicted in advance, goods flows can be controlled in a pro-active manner and better chain designs can be established resulting in higher product availability, constant quality, and less product losses. The paper discusses opportunities of using real-time product quality information for improvement of the design and management of ‘AgriFood Supply Chain Networks’, and presents a preliminary diagnostic instrument for assessment of ‘critical quality’ and ‘logistics control’ points in the supply chain network. Results of a tomato-chain case illustrate the added value of the QCL concept for identifying improvement opportunities in the supply chain as to increase both product availability and quality. Future research aims for the further development of the diagnostic instrument and the quantification of costs and benefits of QCL scenarios.
DOCUMENT
Onze huidige voedselvoorziening wordt gekenmerkt door overmatig gebruik van bestrijdingsmiddelen zoals antibiotica, genetische manipulatie, overdadig veel transport, water en andere grondstoffen worden gebruikt en productieprocessen gebaseerd op fossiele brandstoffen. Ook wordt veel landbouwgrond dusdanig uitgeput dat de kwaliteit van de grond en de diversiteit sterk achteruit gaan. Gezonde en duurzaam geproduceerde voeding zou voor iedereen bereikbaar moeten zijn. Bovendien is er veel leegstand in verschillende regio’s, deze leegstand kan door middel van aquacultuur systemen zeer waardevol worden benut. Dit is de aanleiding geweest om te zoeken naar alternatieve mogelijkheden voor duurzame productie van voedsel binnen de agrifoodsector. Geïntegreerde aquacultuur systemen worden verwacht goed toepasbaar te zijn voor duurzame voedingsproductie. Deze systemen verminderen de afhankelijkheid van de huidige voedselvoorziening van chemie, olie en gas. Bovendien stimuleert het de lokale en regionale economie en schept het duurzame werkgelegenheid. De doelstelling is het sluiten van de materiaalstroomketen, het voorkomen van afvalstoffen en het stimuleren van grondstof besparing. De aanpak van dit project is daarom gericht op de transitie naar circulaire materiaalstromen waarbij hoogwaardig hergebruik van de materialen mogelijk is op een manier waarbij waarde wordt toegevoegd. Hierbij worden mogelijkheden verkent in het kader van de biobased economy en nieuwe business- en verdienmodellen van dergelijke geïntegreerde aquaculturen. De onderzoeksvraag voor A2FISH is welke circulaire business- en verdienmodellen er realiseerbaar zijn voor kansrijke geïntegreerde aquacultuursystemen binnen de agrifoodsector. Om die onderzoeksvraag uiteindelijk te kunnen beantwoorden, zijn een aantal deelvragen geformuleerd: • Welke aquacultuursystemen zijn kansrijk toepasbaar binnen de agrifoodsector? • Aan welke technische en economische aspecten moet een aquacultuursysteem voldoen om te komen tot kansrijke business- en verdienmodellen? • Welke soorten planten kunnen worden met waardevolle inhoudsstoffen kunnen worden gekweekt met de aquacultuursystemen? • Welke soorten gangbaar industrieel visvoer kan worden gefabriceerd uit reststromen uit de voedingsmiddelenindustrie en welke invloed heeft dit voer als bemesting op de waterkwaliteit? • Hoe ziet een vervolgtraject voor een geïntegreerd circulair aquacultuursysteem eruit en in hoeverre is dit anders dan voor gangbare alternatieven?
In onze visie voeren robots autonoom taken uit op de akker. Ze kunnen zaaien, oogsten, onkruid verwijderen, gewassen monitoren en verzorgen. Hierdoor zijn agrariërs minder kostbare tijd kwijt aan basistaken. Ook zijn er met dit soort robots geen (of veel minder) bestrijdingsmiddelen nodig en rijden er geen zware machines meer op het land. Dit leidt tot minder bodemverdichting en daardoor hoeft het land niet (of minder diep) te worden omgeploegd. Naast een enorme besparing op brandstof leidt dit ook tot een betere bodemkwaliteit en worden nieuwe teelten mogelijk. Agrarische robots zijn volop in ontwikkeling. Er zijn echter nog een aantal uitdagingen die opgelost moeten worden. Eén van die uitdagingen is volledig autonome, robuuste en veilige navigatie. De robot moet kunnen rijden zonder een bestuurder. Het AgriNav project: Agricultural Navigation In dit project werkt Saxion samen met drie pioniers op het gebied van agrarische robots in Nederland. Het doel is om een gedegen beeld van oplossingen voor het navigatieprobleem te ontwikkelen. We brengen daarvoor in kaart welke producten en frameworks er zijn en in hoeverre deze direct te gebruiken zijn. Op basis van de bevindingen maken we een afweging of de navigatie oplossing wordt ingekocht of dat deze zelf wordt ontwikkeld, bijvoorbeeld op basis van bestaande open source projecten. Onderdeel van dit KIEM project is het starten van vervolgtrajecten, zoals RAAK-mkb of RAAK-PRO. Impact Het project “AgriNav” geeft de inzet van kleine autonome zelfrijdende robots in de agrarische sector een boost, waardoor er nieuwe en duurzamere landbouw kan ontstaan. Dit past bij de ambitie van Nederland om voorop te lopen op het gebied van technologie voor voedselproductie. Door het project wordt de kennispositie van het consortium versterkt in zowel de topsector HTSM als AgriFood en de NWA routes “Duurzame productie van gezond en veilig voedsel” en “smart industrie”.
Het lijkt de ideale oplossing: robots die de hele dag automatisch onkruid verwijderen, gewassen monitoren en verzorgen. Hierdoor zijn geen (of minder) bestrijdingsmiddelen nodig en rijden er geen zware machines meer op het land. Dit leidt tot minder bodemverdichting en het land hoeft niet (of minder) te worden omgeploegd. Naast een flinke besparing op brandstof leidt dit tot een betere kwaliteit van de grond en mogelijk nieuwe teelten. Inmiddels komen deze robots langzamerhand beschikbaar. Ze worden echter nog niet ingezet in de landbouw in Nederland. We willen inzicht in waarom deze techniek nog niet massaal wordt omarmd. Is het te duur? Niet commercieel verkrijgbaar? Onhandig? Niet robuust? Te ingewikkeld? Technisch nog niet volwassen? Of is er gewoon onbekendheid? Het project In het project brengen we in kaart welke partijen er in de markt actief zijn en welke producten er al zijn en welke nog worden ontwikkeld. Daarnaast willen we vanuit de agrarische sector weten wat zij als drempel en mogelijkheden zien voor de toepassing van deze techniek. We willen beschikbare producten testen en onder de aandacht brengen. Door in kaart te brengen wat er is en wat er gewenst is, ontstaat inzicht in de kloof die nog moet worden overbrugd. Vervolgprojecten kunnen die kloof overbruggen. Impact Het project “automatische onkruidbeheersing” geeft de inzet van kleine autonome robots in de agrarische sector een boost, waardoor er nieuwe en duurzamere landbouw ontstaat. Het project draagt bij aan de ambitie van Nederland om gidsland te zijn op het gebied van technologie voor voedselproductie. Het project wordt de kennispositie van het consortium versterkt in zowel de topsector HTSM als AgriFood en de NWA routes “Duurzame productie van gezond en veilig voedsel” en “smart industrie”.