Landside operations in air cargo terminals consist of many freight forwarders (FFWs) delivering and picking up cargo at the capacity-constrained loading docks at the airport's ground handlers' (GHs) facilities. To improve the operations of the terminal and take advantage of their geographical proximity a small set of FFWs can build a coalition to consolidate stochastically-arriving shipments and share truck fleet capacity while other FFWs continue bringing cargo to the terminal in a non-cooperative manner. Results from a detailed discrete-event simulation model of the cargo landside operations in Amsterdam Aiport showed that all operational policies had trade-offs in terms of the average shipment cycle time of coalition FFWs, the average shipment cycle time of non-coalition FFWs, and the total distance traveled by the coalition fleet, suggesting that horizontal cooperation in this context was not always beneficial, contrary to what previous studies on horizontal cooperation have found. Since dock capacity constitutes a significant constraint on operations in air cargo hubs, this paper also investigates the effect of dock capacity utilization and horizontal cooperation on the performance of consolidation policies implemented by the coalition. Thus, we built a general model of the air cargo terminal to analyze the effects caused by dock capacity utilization without the added complexity of landside operations at Amsterdam Airport to investigate whether the results hold for more general scenarios. Results from the general simulation model suggest that, in scenarios where dock and truck capacity become serious constraints, the average shipment cycle times of non-coalition FFWs are reduced at the expense of an increase in the cycle times of FFWs who constitute the coalition. A good balance among all the performance measures considered in this study is reached by following a policy that takes advantage of consolidating shipments based on individual visits to GH.
DOCUMENT
KLM has revealed the plan to downsize the full-freight cargo fleet in Schiphol Airport, for that reason the company requires to explore the consequences of moving the cargo transported by the full freighters into the bellies of the passenger flights. In this study, the authors analyze the implications of this decision by considering the variability of the load factors and the impact that replacing old aircraft might have. The study addresses how the transition towards the belly operation should impact the current operation of KLM at Schiphol. Our study shows that the replacement of old aircraft with new 787s and 777s will have significant effect on the cargo capacity of the company. The results rise the discussion on future problems to be faced and how to make the transition from full freighter to belly operation.
DOCUMENT
The number of light commercial vehicles (LCV) in cities is growing, which puts increasing pressure on the livability of cities. Freight vehicles are large contributors to polluting air and CO2 emissions and generate problems in terms of safety, noise and loss of public space. Small electric freight vehicles and cargo bikes can offer a solution, as they take less space, can maneuver easily and do not emit local pollution. There is an increasing interest in these vehicle, called light electric freight vehicles (LEFV’s), among logistic service providers in European cities. However, various technical and operational challenges impede large scale implementation. Within the two-year LEVV-LOGIC project, (2016-2018) the use of LEFV’s for city logistics is explored. The project combines expertise on logistics, vehicle design, charging infrastructure and business modelling to find the optimal concept in which LEFV’s can be a financial competitive alternative for conventional freight vehicles. This contribution to EVS30 will present the project’s first year results, showing the guideline for and the applied design of LEFV for future urban city logistics.
DOCUMENT
The Dutch government, in alignment with the Paris climate agreement, has expressed the ambition to reduce CO 2 emissions in the Netherlands by 49% in 2030 compared to 1990. As freight transport is recognized as a serious CO 2 emitter, this sector is confronted with a substantial part of the target. For cities, the reduction of the urban freight transport emissions is, next to the CO 2 reduction, also important to improve the air quality. Dutch municipalities take an active role in coordination, facilitation and acceleration of the emission reduction processes, not only via regulation but also by using their public procurement power. This paper describes the City of Rotterdam's experiences from the EU Horizon 2020 BuyZET project. This project was launched in November 2016 and includes the cities of Rotterdam, Oslo and Copenhagen. The project aims at understanding and optimising the impact of public procurement activities on transport patterns and emissions in cities as well as to find innovative and sustainable delivery solutions for goods and services-related transport in order to reduce emissions.
MULTIFILE
The demand for the transport of goods within the city is rising and with that the number of vans driving around. This has adverse effects on air quality, noise, safety and liveability in the city. LEFVs (Light Electric Freight Vehicles) offer a potential solution for this. There is already a lot of enthusiasm for the LEFVs and several companies have started offering the vehicles. Still many companies are hesitating to start and experience. New knowledge is needed of logistics concepts for the application of LEFVs. This paper shows the outcomes of eight case studies about what is needed to successfully deploy LEFVs for city logistics.
DOCUMENT
To achieve emission reduction targets and to improve local air quality of cities, the uptake of Electric Freight Vehicles (EFV) is essential. Knowledge concerning why companies do adopt EFV is lacking. Research about the diffusion of innovations and the market of EFV shows that frontrunner companies with an innovative or early adopting mindset are adopting (or willing to adopt) EFV. Increase in demand of EFV by such companies can help take a step forward towards mass production of EFV and eventually reduction in purchase cost of EFV. The main objective of this paper is to get insights into the decision-making attributes of frontrunner companies. A qualitative approach was used and 14 interviews were conducted among frontrunner companies delivering goods in the city of Amsterdam. Results show that innovators and early adopters are all motivated by socially or environmentally positive effects of EFV. Strategic motives played a role for all companies who already adopted EFV. All companies wanted to adopt EFV but technical limitations, due specialrequirements for the goods transported, are a reason to not adopt EFV. Getting insights into the preferences of frontrunner companies, the (local) authorities can adjust their policy, schemes and sustainability campaigns to attract more companies adopting EFV. Manufacturing companies can use the insights from this research to adapt their vehicle technology to answer needs of the potential customer for faster adoption rate.
DOCUMENT
Deze publicatie presenteert de resultaten van het Smartest Connected Cargo Airport Schiphol (SCCAS)-project: een tweejarig onderzoek naar logistieke innovaties die de concurrentiepositie van Schiphol op de luchtvrachtketen versterken. In dit project hebben KLM Cargo, Schiphol Nederland, Cargonaut, TU Delft en Hogeschool van Amsterdam samen met diverse partijen in de luchtvrachtketen nieuwe inzichten ontwikkeld om het afhandelingsproces op Schiphol te stroomlijnen en de productkwaliteit in temperatuurgevoelige ketens zoals bloemen en farma beter te beheersen.In Europa heeft Schiphol een sterke positie: het is de derde vrachtluchthaven na Frankfurt en Parijs. Door de beperking van het aantal beschikbare slots op Schiphol krijgen andere luchthavens zoals Brussel, Luik en Luxemburg de kans om extra lading aan te trekken. Het is daarom de ambitie van Schiphol zich te ontwikkelen tot de Europese voorkeursluchthaven voor logistiek hoogwaardige goederenstromen zoals e-commerce, farmaceutische producten en bloemen, en zich te onderscheiden door een efficiënt en betrouwbaar afhandelingsproces. Om die positie te bereiken zet Schiphol in op vier concrete innovatiedoelstellingen:- verbetering van transparantie in de keten door het delen van informatie;- inzicht in logistieke prestaties op basis van volledige en betrouwbare data over zendingen;- efficiënte en betrouwbare aan- en afvoer van luchtvrachtzendingen (landside pickup & delivery);- procesverbeteringen in de supply chains van temperatuurgevoelige producten.
DOCUMENT
In this paper we present a review of existing aviation safety metrics and we lay the foundation for our four-years research project entitled “Measuring Safety in Aviation – Developing Metrics for Safety Management Systems”. We reviewed state-of-the-art literature, relevant standards and regulations, and industry practice. We identified that the long-established view on safety as absence of losses has limited the measurement of safety performance to indicators of adverse events (e.g., accident and incident rates). However, taking into account the sparsity of incidents and accidents compared to the amount of aviation operations, and the recent shift from compliance to performance based approach to safety management, the exclusive use of outcomes metrics does not suffice to further improve safety and establish a proactive monitoring of safety performance. Although the academia and aviation industry have recognized the need to use activity indicators for evaluating how safety management processes perform, and various process metrics have been developed, those have not yet become part of safety performance assessment. This is partly attributed to the lack of empirical evidence about the relation between safety proxies and safety outcomes, and the diversity of safety models used to depict safety management processes (i.e. root-cause, epidemiological or systemic models). This, in turn, has resulted to the development of many safety process metrics, which, however, have not been thoroughly tested against the quality criteria referred in literature, such as validity, reliability and practicality.
DOCUMENT
Dit eindrapport behandelt het onderzoek van CDM@Airports, gericht op Collaborative Decision Making in de logistieke processen van luchtvrachtafhandeling op Nederlandse luchthavens. Dit project, met een looptijd van ruim twee jaar, is gestart op 8 november 2021 en geëindigd op 31 december 2023. HET PROJECT CDM@AIRPORTS OMVAT DRIE WERKPAKKETTEN: 1. Projectmanagement, dit betreft de algehele aansturing van het project incl. stuurgroep, werkgroep en stakeholdermanagement. 2. Onderzoeksactiviteiten, bestaande uit a) cross-chain-samenwerking, b) duurzaamheid en c) adoptie van digitale oplossingen voor datagedreven logistiek. 3. Management van een living lab, een ‘quadruple-helix-setting’ die fysieke en digitale leeromgevingen integreert voor onderwijs en multidisciplinair toegepast onderzoek.
MULTIFILE
Innovative logistics service providers are currently looking for possibilities to introduce electric vehicles for goods distribution. As electrical vehicles still suffer from a limited operation range, the logistical process faces important challenges. In this research we advise on the composition of the electrical vehicle fleet and on the configuration of the service network, to achieve a successful implementation of electric vehicles in the innercity of Amsterdam. Additional question in our research is whether the CO2 emission reduces at all or might even increase due to an increase of tripkilometres as a consequence of mileage constraints by the batteries. The aim of the implementation of the research is to determine the ideal fleet to transport a known demand of cargo, located at a central depot, to a known set of recipients using vehicles of varying types. The problem can be classified as a Fleet Size and Mix Vehicle Routing Problem (FSMVRP). In addition to the regular constraints that apply to the regular FSMVRP, in our case also time windows apply to the cargo that needs to be transported (FSMVRPTW). The operation range of the vehicles is constrained by the battery capacity. We suggest modifications to existing formulations of the FSMVRPTW to make it suitable for the application on cases with electrical vehicles. We apply the model to create an optimal fleet configuration and the service routes. In our research case of the Cargohopper in Amsterdam, the performance of alternative fleet compositions is determined for a variety of scenarios, to assess their robustness. The main uncertainties addressed in the scenarios are the cargo composition, the operation range of the vehicles and their operation speed. Based on our research findings in Amsterdam we conclude that the current generation of electric vehicles as a part of urban consolidation concept have the ability to perform urban freight transport efficiently (19% reduction in vehicle kilometres) and meanwhile have the capability to improve air quality and reduce CO2-emissions by 90%, and reduce noise nuisance in the inner cities of our (future) towns.
LINK