A local operating theater ventilation device to specifically ventilate the wound area has been developed and investigated. The ventilation device is combined with a blanket which lies over the patient during the operation. Two configurations were studied: Configuration 1 where HEPA-filtered air was supplied around and parallel to the wound area and Configuration 2 where HEPA-filtered air was supplied from the top surface of the blanket, perpendicular to the wound area. A similar approach is investigated in parallel for an instrument table. The objective of the study was to verify the effectiveness of the local device. Prototype solutions developed were studied experimentally (laboratory) and numerically (CFD) in a simplified setup, followed by experimental assessment in a full scale mock-up. Isothermal as well as non-isothermal conditions were analyzed. Particle concentrations obtained in proposed solutions were compared to the concentration without local ventilation. The analysis procedure followed current national guidelines for the assessment of operating theater ventilation systems, which focus on small particles (<10 mm). The results show that the local system can provide better air quality conditions near the wound area compared to a theoretical mixing situation (proof-of-principle). It cannot yet replace the standard unidirectional downflow systems as found for ultraclean operating theater conditions. It does, however, show potential for application in temporary and emergency operating theaters
DOCUMENT
Objective: There are widespread shortages of personal protective equipment as a result of the COVID-19 pandemic. Reprocessing filtering facepiece particle (FFP)-type respirators may provide an alternative solution in keeping healthcare professionals safe. Design: Prospective, bench-to-bedside. Setting: A primary care-based study using FFP-2 respirators without exhalation valve (3M Aura 1862+ (20 samples), Maco Pharma ZZM002 (14 samples)), FFP-2 respirators with valve (3M Aura 9322+ (six samples) and San Huei 2920V (16 samples)) and valved FFP type 3 respirators (Safe Worker 1016 (10 samples)). Interventions: All masks were reprocessed using a medical autoclave (17 min at 121°C with 34 min total cycle time) and subsequently tested up to three times whether these respirators retained their integrity (seal check and pressure drop) and ability to filter small particles (0.3–5.0 µm) in the laboratory using a particle penetration test. Results: We tested 33 respirators and 66 samples for filter capacity. All FFP-2 respirators retained their shape, whereas half of the decontaminated FFP-3 respirators showed deformities and failed the seal check. The filtering capacity of the 3M Aura 1862 was best retained after one, two and three decontamination cycles (0.3 µm: 99.3%±0.3% (new) vs 97.0±1.3, 94.2±1.3% or 94.4±1.6; p<0.001). Of the other FFP-2 respirators, the San Huei 2920 V had 95.5%±0.7% at baseline vs 92.3%±1.7% vs 90.0±0.7 after one-time and two-time decontaminations, respectively (p<0.001). The tested FFP-3 respirator (Safe Worker 1016) had a filter capacity of 96.5%±0.7% at baseline and 60.3%±5.7% after one-time decontamination (p<0.001). Breathing and pressure resistance tests indicated no relevant pressure changes between respirators that were used once, twice or thrice. Conclusion: This small single-centre study shows that selected FFP-2 respirators may be reprocessed for use in primary care, as the tested masks retain their shape, ability to retain particles and breathing comfort after decontamination using a medical autoclave.
MULTIFILE
The use of cleanrooms is increasing and the expectation is that this growth will continue in the coming decade. When compared to an average office building, cleanrooms consume large amounts of energy due to their high Air Change Rates (ACRs) and strict air conditioning requirements. Application of Demand Controlled Filtration (DCF) is a means to reduce the (fan) energy demand. The question is whether the air quality is compromised at reduced ACR and overpressure conditions in the non-operational hours of a cleanroom. In a cleanroom mock-up, experiments have been performed to investigate the particle concentration build-up for different cases with DCF, including an extreme case with zero ACR and zero pressure difference. For the DCF conditions and the specific case study, conditions for particle concentration outside the cleanroom, that may still provide high-quality Good Manufacturing Practices (GMP) conditions in the cleanroom, are derived from the results. Furthermore, it assumes DCF application via occupancy sensing, i.e. starting DCF 30 min after the last person left the cleanroom. When applying DCF for a normal workweek (production 08:00–17:00), fan energy savings higher than 70% can be obtained without compromising the air quality requirements under normal circumstances. DCF, in combination with a reduced pressure difference, therefore is regarded as a feasible solution to reduce the energy demand of cleanrooms when the personnel in the cleanroom are the main source of contamination. These results are obtained for the presented case study. Though assuming a conservative approach, confirmation of these outcomes for other cleanrooms is recommended.
DOCUMENT
What is known in scientific literature at this point in time about the effects of the measures against the transmission of the coronavirus and what is the meaning of this for the organisers of events?
DOCUMENT
Particulate matter (PM) exposure, amongst others caused by emissions and industrial processes, is an important source of respiratory and cardiovascular diseases. There are situations in which blue-collar workers in roadwork companies are at risk. This study investigated perceptions of risk and mitigation of employees in roadwork (construction and maintenance) companies concerning PM, as well as their views on methods to empower safety behavior, by means of a mental models approach. We held semi-structured interviews with twenty-two employees (three safety specialists, seven site managers and twelve blue-collar workers) in three different roadwork companies. We found that most workers are aware of the existence of PM and reduction methods, but that their knowledge about PM itself appears to be fragmented and incomplete. Moreover, road workers do not protect themselves consistently against PM. To improve safety instructions, we recommend focusing on health effects, reduction methods and the rationale behind them, and keeping workers’ mental models into account. We also recommend a healthy dialogue about work-related risk within the company hierarchy, to alleviate both information-related and motivation-related safety issues. https://doi.org/10.1016/j.ssci.2019.06.043 LinkedIn: https://www.linkedin.com/in/john-bolte-0856134/
DOCUMENT
Wat is er op dit moment (medio augustus 2020) in de wetenschappelijke literatuur bekend over (de effecten van maatregelen tegen) de verspreiding van het coronavirus en wat is de betekenis daarvan voor organisatoren van evenementen?
DOCUMENT
The thoracic and peritoneal cavities are lined by serous membranes and are home of the serosal immune system. This immune system fuses innate and adaptive immunity, to maintain local homeostasis and repair local tissue damage, and to cooperate closely with the mucosal immune system. Innate lymphoid cells (ILCs) are found abundantly in the thoracic and peritoneal cavities, and they are crucial in first defense against pathogenic viruses and bacteria. Nanomaterials (NMs) can enter the cavities intentionally for medical purposes, or unintentionally following environmental exposure; subsequent serosal inflammation and cancer (mesothelioma) has gained significant interest. However, reports on adverse effects of NMon ILCs and other components of the serosal immune systemare scarce or even lacking. As ILCs are crucial in the first defense against pathogenic viruses and bacteria, it is possible that serosal exposure to NMmay lead to a reduced resistance against pathogens. Additionally, affected serosal lymphoid tissues and cells may disturb adipose tissue homeostasis. This review aims to provide insight into key effects of NMon the serosal immune system.
DOCUMENT
Background: With increasing knowledge on the adverse health efects of certain constituents of PM (particulate matter), such as silica, metals, insoluble ions, and black carbon, PM has been under the attention of work safety experts. Previously, we investigated the perceptions of blue-collar workers in highly exposed areas of work. Subsequently, we developed an instruction folder highlighting the most important aspects of PM risk and mitigation, and tested this folder in a digital experiment. The digital experiment yielded positive results with regards to acquired knowledge about PM, but did not on risk perception or safety behavior. Methods: In this study, we investigate the efects of the folder when combined with a practical assignment involving a PM exposimeter, showing the amount of particulate matter in microgram per cubic meter in real time on its display for various activities. We tested this at six workplaces of four companies in the roadwork and construction branch. Results: The results indicate that the folder itself yields an increased knowledge base in employees about PM, but the efects of the practical assignment are more contentious. Nevertheless, there is an indication that using the assignment may lead to a higher threat appraisal among employees for high exposure activities. Conclusion: We recommend implementing our folder in companies with high PM exposure and focusing further research on appropriate methods of implementation.
DOCUMENT
AIM: To compare the shear bond strength (SBS) after aging of two dual-curing composite resin cements to multiphase composite resin (experiment) and glass-ceramics (control).METHODS: Seventy computer-aided design/computer-aided manufacturing (CAD/CAM) blocks were prepared: 24 multiphase composite resin blocks (Lava Ultimate; experiment), and 12 control blocks (groups 5 and 6: 6 IPS e.max CAD, 6 IPS Empress CAD). Surface treatments of the experiment groups were: 1) Al2O3 airborne particle abrasion; 2) bur-roughening; 3) silica-coated aluminum oxide particle abrasion; and 4) hydrofluoric (HF) acid etching. Per study group, Variolink II (a) and RelyX Ultimate (b) were used as cements. Per treatment group, four cement cylinders were adhered to the conditioned blocks (n = 12). After thermocyclic aging (10.000x, 5°C to 55°C), notch-edge shear testing was applied. Modes of failure were examined. A P value of 0.05 was considered significant.RESULTS: Groups 1a (18.68 ± 3.81) and 3a (17.09 ± 3.40) performed equally to 6a (20.61 ± 4.10). Group 5a (14.39 ± 2.80) did not significantly differ from groups 1a, 3a, and 4a (15.21 ± 4.29). Group 2a (11.61 ± 3.39) showed the lowest bond strength. For the RelyX Ultimate specimens, mean bond strengths were: 1b (18.12 ± 2.84) > 4b (15.57 ± 2.31) > 2b (12.34 ± 1.72) = 3b (11.54 ± 2.45) = 6b (12.31 ± 1.87) > 5b (0.78 ± 0.89). Failure mode analysis showed a significant association between bond strength values and modes of failure (chi-square).CONCLUSION: The SBS of the composite cements to the multiphase composite resin that was treated by Al2O3 or silica-coated aluminum oxide particle abrasion is comparable to the bond of the control groups.
LINK
In indoor comfort research, thermal comfort of care-professionals in hospital environment is a little explored topic. To address this gap, a mixed methods study, with the nursing staff in hospital wards acting as participants,was undertaken. Responses were collected during three weeks in the summer (n = 89), and four weeks in the autumn (n = 43). Analysis of the subjective feedback from nurses and the measured indoor thermal conditions revealed that the existent thermal conditions (varying between 20 and 25 °C) caused a slightly warm thermal sensation on the ASHRAE seven point scale. This led to a slightly unacceptable thermal comfort and a slightly obstructed self-appraised work performance. The results also indicated that the optimal thermal sensation for the nurses—suiting their thermal comfort requirements and work performance—would be closer to‘slightly cool’than neutral. Using a design approach of dividing the hospital ward into separate thermal zones, with different set-points for respectively patient and care-professionals’comfort, would seem to be the ideal solution that contributes positively to the work environment and, at the same time, creates avenues for energy conservation.
DOCUMENT