This research examines the impact of transitioning to an autonomous operation on the airside of Schiphol airport, with a specific focus on emissions that affect both the environment and the staff working within airport premises. This study will explore current emissions from vehicles on Schiphol's airside, assessing their environmental impact and identifying harmful emissions. It will evaluate potential solutions, notably the role of electric vehicles, comparing this to the status quo before mapping the transition to an autonomous airside and its environmental consequences. A significant focus will be on the implications for staff working in these conditions. Additionally, it will review relevant laws and regulations to propose improvements, aiming to enhance Schiphol's environmental footprint. Conducted by Bright Sky for Schiphol Airport, this research aims to address overlooked harmful substances at the airport, seeking prompt solutions. Utilized by Schiphol, the findings will shed light on the necessity for innovation towards electric and autonomous vehicles, underlining the urgency for environmental improvements and technological advancements to tackle pollution issues effectively.
In this paper we propose a novel approach for validating a simulation model for a passengers' airport terminal. The validation approach is based on a "historical data" and "model-to-model" validation approach, and the novelty is represented by the fact that the model used as comparison uses historical data from different data sources and technologies. The proposed validation approach , which is presented as part of the IMHOTEP project, implements various data fusion and data analytics methods to generate the passenger "Activity-Travel-Diary", which is the model that is then compared with the results from the simulation model. The data used for developing the "Activity-Travel-Diary" comes from different sources and technologies such as: passengers data (personal mobile phone, apps), airport data (airport Wi-Fi, GPS, scanning facilities), and flight Information (flight schedules, gate allocation etc.). The simulation model is based on an agent-based simulation paradigm and includes all the passengers flows and operations within a terminal airport. The proposed validation approach is implemented in a real-life case study, Palma de Mallorca Airport, and preliminary results of the validation (calibration) process of the simulation model are presented.
The need to better understand how to manage the real logistics operations in Schiphol Airport, a strategic hub for the economic development of the Netherlands, created the conditions to develop a project where academia and industry partnered to build a simulation model of the Schiphol Airport Landside operations. This paper presents such a model using discrete-event simulation. A realistic representation of the open road network of the airport as well as the (un)loading dock capacities and locations of the five ground handlers of Schiphol Airport was developed. Furthermore, to provide practitioners with applicable consolidation and truck-dispatching policies, some easy-to-implement rules are proposed and implemented in the model. Preliminary results from this model show that truck-dispatching policies have a higher impact than consolidation policies in terms of both distance travelled by cooperative logistic operators working within the airport and shipments’ average flow time. Furthermore, the approach presented in this study can be used for studying similar megahubs.