Recommenders play a significant role in our daily lives, making decisions for users on a regular basis. Their widespread adoption necessitates a thorough examination of how users interact with recommenders and the algorithms that drive them. An important form of interaction in these systems are algorithmic affordances: means that provide users with perceptible control over the algorithm by, for instance, providing context (‘find a movie for this profile’), weighing criteria (‘most important is the main actor’), or evaluating results (‘loved this movie’). The assumption is that these algorithmic affordances impact interaction qualities such as transparency, trust, autonomy, and serendipity, and as a result, they impact the user experience. Currently, the precise nature of the relation between algorithmic affordances, their specific implementations in the interface, interaction qualities, and user experience remains unclear. Subjects that will be discussed during the workshop, therefore, include but are not limited to the impact of algorithmic affordances and their implementations on interaction qualities, balances between cognitive overload and transparency in recommender interfaces containing algorithmic affordances; and reasons why research into these types of interfaces sometimes fails to cross the research-practice gap and are not landing in the design practice. As a potential solution the workshop committee proposes a library of examples of algorithmic affordances design patterns and their implementations in recommender interfaces enriched with academic research concerning their impact. The final part of the workshop will be dedicated to formulating guiding principles for such a library.
LINK
Algorithmic affordances are defined as user interaction mechanisms that allow users tangible control over AI algorithms, such as recommender systems. Designing such algorithmic affordances, including assessing their impact, is not straightforward and practitioners state that they lack resources to design adequately for interfaces of AI systems. This could be amended by creating a comprehensive pattern library of algorithmic affordances. This library should provide easy access to patterns, supported by live examples and research on their experiential impact and limitations of use. The Algorithmic Affordances in Recommender Interfaces workshop aimed to address key challenges related to building such a pattern library, including pattern identification features, a framework for systematic impact evaluation, and understanding the interaction between algorithmic affordances and their context of use, especially in education or with users with a low algorithmic literacy. Preliminary solutions were proposed for these challenges.
LINK
The user experience of our daily interactions is increasingly shaped with the aid of AI, mostly as the output of recommendation engines. However, it is less common to present users with possibilities to navigate or adapt such output. In this paper we argue that adding such algorithmic controls can be a potent strategy to create explainable AI and to aid users in building adequate mental models of the system. We describe our efforts to create a pattern library for algorithmic controls: the algorithmic affordances pattern library. The library can aid in bridging research efforts to explore and evaluate algorithmic controls and emerging practices in commercial applications, therewith scaffolding a more evidence-based adoption of algorithmic controls in industry. A first version of the library suggested four distinct categories of algorithmic controls: feeding the algorithm, tuning algorithmic parameters, activating recommendation contexts, and navigating the recommendation space. In this paper we discuss these and reflect on how each of them could aid explainability. Based on this reflection, we unfold a sketch for a future research agenda. The paper also serves as an open invitation to the XAI community to strengthen our approach with things we missed so far.
MULTIFILE
In flexible education, recommender systems that support course selection, are considered a viable means to help students in making informed course selections, especially where curricula offer greater flexibility. However, these recommender systems present both potential benefits and looming risks, such as overdependence on technology, biased recommendations, and privacy issues. User control mechanisms in recommender interfaces (or algorithmic affordances) might offer options to address those risks, but they have not been systematically studied yet. This paper presents the outcomes of a design session conducted during the INTERACT23 workshop on Algorithmic Affordances in Recommender Interfaces. This design session yielded insights in how the design of an interface, and specifically the algorithmic affordances in these interfaces, may address the ethical risks and dilemmas of using a recommender in such an impactful context by potentially vulnerable users. Through design and reflection, we discovered a host of design ideas for the interface of a flexible education interface, that can serve as conversation starters for practitioners implementing flexible education. More research is needed to explore these design directions and to gain insights on how they can help to approximate more ethically operating recommender systems.
LINK
This exploratory study investigates the rationale behind categorizing algorithmic controls, or algorithmic affordances, in the graphical user interfaces (GUIs) of recommender systems. Seven professionals from industry and academia took part in an open card sorting activity to analyze 45 cards with examples of algorithmic affordances in recommender systems’ GUIs. Their objective was to identify potential design patterns including features on which to base these patterns. Analyzing the group discussions revealed distinct thought processes and defining factors for design patterns that were shared by academic and industry partners. While the discussions were promising, they also demonstrated a varying degree of alignment between industry and academia when it came to labelling the identified categories. Since this workshop is part of the preparation for creating a design pattern library of algorithmic affordances, and since the library aims to be useful for both industry and research partners, further research into design patterns of algorithmic affordances, particularly in terms of labelling and description, is required in order to establish categories that resonate with all relevant parties
LINK
Recommender systems are widely used in today’s society, but many of them do not meet users’ needs and therefore fail to reach their full potential. Without careful consideration, such systems can interfere with the natural decision-making process, resulting in the disregard for recommendations provided. Therefore, it is vital to take into account multiple factors, including expertise, time and risk associated with decisions, as well as the system’s context to identify suitable affordances. Furthermore, it is important to consider the algorithmic and digital literacy of the users. This analysis could reveal innovative design opportunities, like combining a recommender system with a digital agent. As a result, it may meet interpersonal needs and facilitate a more natural interaction with the system. Implementing this combination in a digital marketplace could be a promising way to empower users towards an independent life.
LINK
Algorithmic affordances—interactive mechanisms that allow users to exercise tangible control over algorithms—play a crucial role in recommender systems. They can facilitate users’ sense of autonomy, transparency, and ultimately ownership over a recommender’s results, all qualities that are central to responsible AI. Designers, among others, are tasked with creating these interactions, yet state that they lack resources to do so effectively. At the same time, academic research into these interactions rarely crosses the research-practice gap. As a solution, designers call for a structured library of algorithmic affordances containing well-tested, well-founded, and up-to-date examples sourced from both real-world and experimental interfaces. Such a library should function as a boundary object, bridging academia and professional design practice. Academics could use it as a supplementary platform to disseminate their findings, while both practitioners and educators could draw upon it for inspiration and as a foundation for innovation. However, developing a library that accommodates multiple stakeholders presents several challenges, including the need to establish a common language for categorizing algorithmic affordances and devising a categorization of algorithmic affordances that is meaningful to all target groups. This research attempts to bring the designer perspective into this categorization.
LINK
Smart speakers are heralded to make everyday life more convenient in households around the world. These voice-activated devices have become part of intimate domestic contexts in which users interact with platforms.This chapter presents a dualstudy investigating the privacy perceptions of smart speaker users and non-users. Data collected in in-depth interviews and focus groups with Dutch users and non-users show that they make sense of privacy risks through imagined sociotechnical affordances. Imagined affordances emerge with the interplay between user expectations, technologies, and designer intentions. Affordances like controllability, assistance, conversation, linkability, recordability, and locatability are associated with privacy considerations. Viewing this observation in the light of privacy calculus theory, we provide insights into how users’ positive experiences of the control over and assistance in the home offered by smart speakers outweighs privacy concerns. On the contrary, non-users reject the devices because of fears that recordability and locatability would breach the privacy of their homes by tapping data to platform companies. Our findings emphasize the dynamic nature of privacy calculus considerations and how these interact with imagined affordances; establishing a contrast between rational and emotional responses relating to smart speaker use.Emotions play a pivotal role in adoption considerations whereby respondents balance fears of unknown malicious actors against trust in platform companies.This study paves the way for further research that examines how surveillance in the home is becoming increasingly normalized by smart technologies.
DOCUMENT
The user’s experience with a recommender system is significantly shaped by the dynamics of user-algorithm interactions. These interactions are often evaluated using interaction qualities, such as controllability, trust, and autonomy, to gauge their impact. As part of our effort to systematically categorize these evaluations, we explored the suitability of the interaction qualities framework as proposed by Lenz, Dieffenbach and Hassenzahl. During this examination, we uncovered four challenges within the framework itself, and an additional external challenge. In studies examining the interaction between user control options and interaction qualities, interdependencies between concepts, inconsistent terminology, and the entity perspective (is it a user’s trust or a system’s trustworthiness) often hinder a systematic inventory of the findings. Additionally, our discussion underscored the crucial role of the decision context in evaluating the relation of algorithmic affordances and interaction qualities. We propose dimensions of decision contexts (such as ‘reversibility of the decision’, or ‘time pressure’). They could aid in establishing a systematic three-way relationship between context attributes, attributes of user control mechanisms, and experiential goals, and as such they warrant further research. In sum, while the interaction qualities framework serves as a foundational structure for organizing research on evaluating the impact of algorithmic affordances, challenges related to interdependencies and context-specific influences remain. These challenges necessitate further investigation and subsequent refinement and expansion of the framework.
LINK
Blended learning, a teaching format in which face-to-face and online learning is integrated, nowadays is an important development in education. Little is known, however, about its affordances for teacher education, and for domain specific didactical courses in particular. To investigate this topic, we carried out a design research project in which teacher educators engaged in a co-design process of developing and field-testing open online learning units for mathematics and science didactics. The preliminary results concern descriptions of the work processes by the design teams, of design heuristics, and of typical ways of collaborating. These findings are illustrated for the case of two of the designed online units on statistics didactics and mathematical thinking, respectively.
LINK