Distributed ledger technologies (DLTs) such as blockchain have in recent years been presented as a new general-purpose technology that could underlie many aspects of social and economic life, including civics and urban governance. In an urban context, over the past few years, a number of actors have started to explore the application of distributed ledgers in amongst others smart city services as well as in blockchain for good and urban commons-projects. DLTs could become the administrative backbones of such projects, as the technology can be set-up as an administration, management and allocation tool for urban resources. With the addition of smart contracts, DLTs can further automate the processing of data and execution of decisions in urban resource management through algorithmic governance. This means that the technological set-up and design of such DLT based systems could have large implications for the ways urban resources are governed. Positive contributions are expected to be made toward (local) democracy, transparent governance, decentralization, and citizen empowerment. We argue that to fully scrutinize the implications for urban governance, a critical analysis of distributed ledger technologies is necessary. In this contribution, we explore the lens of “the city as a license” for such a critical analysis. Through this lens, the city is framed as a “rights-management-system,” operated through DLT technology. Building upon Lefebvrian a right to the city-discourses, such an approach allows to ask important questions about the implications of DLTs for the democratic governance of cities in an open, inclusive urban culture. Through a technological exploration combined with a speculative approach, and guided by our interest in the rights management and agency that blockchains have been claimed to provide to their users, we trace six important issues: quantification; blockchain as a normative apparatus; the complicated relationship between transparency and accountability; the centralizing forces that act on blockchains; the degrees to which algorithmic rules can embed democratic law-making and enforcing; and finally, the limits of blockchain's trustlessness.
MULTIFILE
Through artistic interventions into the computational backbone of maternity services, the artists behind the Body Recovery Unit explore data production and its usages in healthcare governance. Taking their artwork The National Catalogue Of Savings Opportunities. Maternity, Volume 1: London (2017) as a case study, they explore how artists working with ‘live’ computational culture might draw from critical theory, Science and Technology Studies as well as feminist strategies within arts-led enquiry. This paper examines the mechanisms through which maternal bodies are rendered visible or invisible to managerial scrutiny, by exploring the interlocking elements of commissioning structures, nationwide information standards and databases in tandem with everyday maternity healthcare practices on the wards in the UK. The work provides a new context to understand how re-prioritisation of ‘natural’ and ‘normal’ births, breastfeeding, skin-to-skin contact, age of conception and other factors are gaining momentum in sync with cost-reduction initiatives, funding cuts and privatisation of healthcare services.
MULTIFILE
To accelerate differentiation between Staphylococcus aureus and Coagulase Negative Staphylococci (CNS), this study aimed to compare six different DNA extraction methods from 2 commonly used blood culture materials, i.e. BACTEC and Bact/ALERT. Furthermore, we analyzed the effect of reduced blood culture times for detection of Staphylococci directly from blood culture material. A real-time PCR duplex assay was used to compare 6 different DNA isolation protocols on two different blood culture systems. Negative blood culture material was spiked with MRSA. Bacterial DNA was isolated with: automated extractor EasyMAG (3 protocols), automated extractor MagNA Pure LC (LC Microbiology Kit MGrade), a manual kit MolYsis Plus, and a combination between MolYsis Plus and the EasyMAG. The most optimal isolation method was used to evaluate reduced bacterial culture times. Bacterial DNA isolation with the MolYsis Plus kit in combination with the specific B protocol on the EasyMAG resulted in the most sensitive detection of S.aureus, with a detection limit of 10 CFU/ml, in Bact/ALERT material, whereas using BACTEC resulted in a detection limit of 100 CFU/ml. An initial S.aureus load of 1 CFU/ml blood can be detected after 5 hours of culture in Bact/ALERT3D by combining the sensitive isolation method and the tuf LightCycler assay.