Within the Flexnode Plus project the long-term degradation characteristics of a proton exchange membrane (PEM) electrolyzer (5.5 kW, AC, 1 Nm3/h H2) and fuel cell (1.0 kW, DC, 0.9 Nm3/h) was experimentally tested. The electrolyzer unit was operated at various loads and pressures for approximately 750 hours in total, while the fuel cell was operated at a constant load of 1 Ω resistance for approximately 1120 hours in total. The efficiency of the hydrogen production in the electrolyzer and the electricity production in the fuel cell was expressed using the hourly average system efficiency and average cell efficiency. Inorder to predict the state of health and remaining lifetime of the electrolyzer cell and fuel cell, the decay of the cell voltage over time was monitored and the direct mapping from aging data method was used.The electrolyzer cell showed a stable cell voltage and cell efficiency in the studied time period, with an average cell voltage decay rate of 0.5 μV/h. The average cell voltage of the fuel cell dropped with a rate of 2 μV/h during the studied time period.
DOCUMENT
Problems of energy security, diversification of energy sources, and improvement of technologies (including alternatives) for obtaining motor fuels have become a priority of science and practice today. Many scientists devote their scientific research to the problems of obtaining effective brands of alternative (reformulated) motor fuels. Our scientific school also deals with the problems of the rational use of traditional and alternative motor fuels.This article focused on advances in motor fuel synthesis using natural, associated, or biogas. Different raw materials are used for GTL technology: biomass, natural and associated petroleum gases. Modern approaches to feed gas purification, development of Gas-to-Liquid-technology based on Fischer–Tropsch synthesis, and liquid hydrocarbon mixture reforming are considered.Biological gas is produced in the process of decomposition of waste (manure, straw, grain, sawdust waste), sludge, and organic household waste by cellulosic anaerobic organisms with the participation of methane fermentation bacteria. When 1 tonne of organic matter decomposes, 250 to 500–600 cubic meters of biogas is produced. Experts of the Bioenergy Association of Ukraine estimate the volume of its production at 7.8 billion cubic meters per year. This is 25% of the total consumption of natural gas in Ukraine. This is a significant raw material potential for obtaining liquid hydrocarbons for components of motor fuels.We believe that the potential for gas-to-liquid synthetic motor fuels is associated with shale and coalfield gases (e.g. mine methane), methane hydrate, and biogas from biomass and household waste gases.
DOCUMENT
On the 11th of may 2016 dr. ir. J. Dam officially started his professorship in Sustainable LNG Technology at the Hanze University of Applied Science. In this Inaugural speech he declared his hopes and plans for the Hanze University and it's Centre of Expertise - Energy.
DOCUMENT
This paper proposes a Hybrid Microgrid (HμG) model including distributed generation (DG) and a hydrogen-based storage system, controlled through a tailored control strategy. The HμG is composed of three DG units, two of them supplied by solar and wind sources, and the latter one based on the exploitation of theProton Exchange Membrane (PEM) technology. Furthermore, the system includes an alkaline electrolyser, which is used as a responsive load to balance the excess of Variable Renewable Energy Sources (VRES) production, and to produce the hydrogen that will be stored into the hydrogen tank and that will be used to supply the fuel cell in case of lack of generation. The main objectives of this work are to present a validated dynamic model for every component of the HμG and to provide a strategy to reduce as much as possible the power absorption from the grid by exploiting the VRES production. The alkaline electrolyser and PEM fuel cell models are validated through real measurements. The State of Charge (SoC) of the hydrogen tank is adjusted through an adaptive scheme. Furthermore, the designed supervisor power control allows reducing the power exchange and improving the system stability. Finally, a case, considering a summer load profile measured in an electrical substation of Politecnico di Torino, is presented. The results demonstrates the advantages of a hydrogen-based micro-grid, where the hydrogen is used as medium to store the energy produced by photovoltaic and wind systems, with the aim to improve the self-sufficiency of the system
MULTIFILE
This report focuses on the feasibility of the power-to-ammonia concept. Power-to-ammonia uses produced excess renewable electricity to electrolyze water, and then to react the obtained hydrogen with nitrogen, which is obtained through air separation, to produce ammonia. This process may be used as a “balancing load” to consume excess electricity on the grid and maintain grid stability. The product, ammonia, plays the role of a chemical storage option for excess renewable energy. This excess energy in the form of ammonia can be stored for long periods of time using mature technologies and an existing global infrastructure, and can further be used either as a fuel or a chemical commodity. Ammonia has a higher energy density than hydrogen; it is easier to store and transport than hydrogen, and it is much easier to liquefy than methane, and offers an energy chain with low carbon emissions.The objective of this study is to analyze technical, institutional and economic aspects of power-to-ammonia and the usage of ammonia as a flexible energy carrier.
DOCUMENT
Abstract: Climate change is related with weather extremes, which may cause damages to infrastructure used by freight transport services. Heavy rainfall may lead to flooding and damage to railway lines, roads and inland waterways. Extreme drought may lead to extremely low water levels, which prevent safe navigation by inland barges. Wet and dry periods may alternate, leaving little time to repair damages. In some Western and Middle-European countries, barges have a large share in freight transport. If a main waterway is out of service, then alternatives are called for. Volume- and price-wise, trucking is not a viable alternative. Could railways be that alternative? The paper was written after the unusually long dry summer period in Europe in 2022. It deals with the question: If the Rhine, a major European waterway becomes locally inaccessible, could railways (temporarily) play a larger role in freight transport? It is a continuation of our earlier research. It contains a case study, the data of which was fed into a simulation model. The model deals with technical details like service specification route length, energy consumption and emissions. The study points to interesting rail services to keep Europe’s freight on the move. Their realization may be complex especially in terms of logistics and infrastructure, but is there an alternative?
MULTIFILE
Kunstmest voor de velden en brandstof voor landbouwvoertuigen zijn belangrijke kostenposten voor de landbouw. Kunstmest en dieselbrandstof zijn energie-intensieve producten en daarmee ook een belangrijke bron van CO2 emissies vanuit de landbouw. Technologie voor hernieuwbare energie zoals zonne- en wind energie wordt steeds goedkoper waardoor het rendabeler wordt deze technologie ook te gebruiken. Terug leveren van geproduceerde hernieuwbare elektriciteit aan het elektriciteitsnet is echter niet altijd voordelig. De hernieuwbare energie moet hier concurreren met gesubsidieerde fossiele elektriciteit opgewekt met kolen, gas en kerncentrales. Kleinschalige decentrale productie op het boerenbedrijf van zowel kunstmest als transportbrandstof met behulp van hernieuwbare energie levert de boer en zijn omgeving direct voordeel op:Inkoopkosten voor deze producten worden lagerVermindert de CO2-emissie van de landbouw aanzienlijk, de carbo-footprint wordt verminderdRendement op hernieuwbare energie technologie wordt hogerAmmoniak (NH3) is zowel grondstof voor kunstmest als brandstof voor motoren. Ammoniak kan diesel voor meer dan 90% vervangen in bestaande dieselmotoren. Daarmee is ammoniak een uitstekende vervanger voor diesel in het landbouw en wegverkeer. Ammoniak is ook grondstof voor waterstof (H2) in waterstofmotoren. De technologie om ammoniak te maken is gebaseerd op het Haber-Bosch proces uit het begin van de vorige eeuw. Deze technologie vraagt veel energie voor het creëren van de hoge druk en de hoge temperaturen. Daarom is het voordelig het Haber-Bosch proces in grote installaties uit te voeren.Nieuwe brandstofcel-technologie maakt het mogelijk het Haber-Bosch proces (elektro-katalytisch) op kleine schaal uit te voeren. Het Kiemkracht concept Greenfertilizer onderzoekt de mogelijkheden van deze technologie voor ammoniak productie en benutting op het eigen boerenbedrijf.Het onderzoek is uitgevoerd door TU-Delft en Hanzehogeschool. Het doel was een opgeschaald ammonia elektrolyse synthese proces te ontwikkelen waar een eerste schaal-sprong gemaakt zou worden.Het elektrochemisch ammonia synthese proces is gebaseerd op zuurstofgeleidende elektroden, (proces figuur3. zie onder). Het voordeel van deze zuurstofgeleidende electroden boven proton geleidende electroden is dat er met omgevingslucht gewerkt kan worden in plaats van met stoom. Stoom maakt technologische ontwikkeling van het proces gecompliceerder. Experimenteel en theoretisch onderzoek van TU-Delft laat zien dat met deze elektroden ammonia te produceren is. TU-Delft heeft met zuurstof geleidende electroden ammonia productiesnelheden behaald van 1,84x 10-10 mol s-1 cm-2 bij 650oC. Deze snelheden zijn een factor 100-1000 hoger dan tot nu toe gerapporteerd in literatuur (Kyriakou et al 2017). Simulatie-studies van TU-Delft laten zien dat het ammonia synthese proces met een factor 100-1000 versneld kan worden door het proces onder druk te brengen bij een temperatuur van 400-500C. Op basis van deze simulaties is een ontwerp gemaakt en uitgevoerd voor een “hoge-druk electrolyse reactor”. Technische complicaties met deze hoge druk elektrolyse reactor maakte het onmogelijk betrouwbare resultaten te verkrijgen. Met name gas lekkages bij hoge temperaturen maakten het onmogelijk ammonia massabalansen op te stellen. Bovendien was ammonia productie niet aan te tonen. Hiermee zijn de simulatie voorspellingen niet bevestigd en blijft het onduidelijk of de onderliggende hypothesen correct zijn. De Hanzehogeschool heeft onderzoek uitgevoerd naar het concentreren van ammonia voor toepassing als vloeibare kunstmest. Uitgangspunt hierbij waren de ammonia productieniveau van de experimentele opzet en de voorspelde gesimuleerde opzet. Met de juiste technologie is het mogelijk de ammonia te concentreren voor verdere verwerking als kunstmest. Echter dit proces is economisch rendabel bij een ammonia concentratie in de uitstroom van de elektrolyse reactor die een factor 1000 hoger is dan tot nu toe is gemeten. Het feit dat de TU-Delft er niet in is geslaagd een kleine schaalsprong (factor 10) te maken met de drukreactor betekent dat commerciële toepassing van dit proces voorlopig nog niet aan de orde is. Achteraf gezien was het wellicht beter geweest de keuze te maken voor de proton geleidende electroden die bij lagere temperaturen werkzaam zijn, hier is een schaalsprong van een factor 100 ten opzichte van de recent gerapporteerde ammonia synthese snelheden. Een recente review door Kyriakou et al 2017 geeft als aanbeveling onderzoek te verrichten naar verbeterde elektrodematerialen en geleidende elektrolyten in de reactorcellen. Uiteindelijk zal het elektrochemisch ammonia synthese proces er komen vanwege de vele voordelen die het beidt. Processen moeten met een factor 100-1000 verbeterd worden eer het proces economisch rendabel is. Op dit moment is het nog niet te voospellen wanneer dit moment er is.
DOCUMENT
De dissertatie "Probing Futures, Acting Today" van Caroline Maessen onderzoekt hoe organisaties alternatieve toekomsten kunnen verbeelden om dagelijkse toekomstvormende praktijken te veranderen teneinde complexe maatschappelijke uitdagingen aan te pakken. Organisaties hebben de neiging door lineair denken hun verbeeldingsvermogen te beperken tot conventionele toekomsten, wat effectieve reacties op problemen zoals klimaatverandering en sociale ongelijkheid belemmert. Het gevolg is dat na de zoveelste heisessie voor visieontwikkeling, er nog steeds niets fundamenteel verandert. Hoe de toekomst zich ontvouwt, tegen de achtergrond van maatschappelijke complexe problemen, gaat vaak voorbij onze collectieve verbeeldingskracht. Organisaties hebben moeite om zich te verbinden met onconventionele toekomsten en acties in het heden daarop af te stemmen. Voor betekenisvolle verandering moeten organisaties navigeren tussen de aantrekkingskracht van inspirerende onconventionele toekomsten en de behoefte aan stabiliteit en controle. Maessen heeft in twee (semi) publieke organisaties onderzocht waarom dit zo lastig is en hoe organisaties daarin ondersteund kunnen worden.
DOCUMENT
This article outlines issues to be tackled when considering increases in biofuel usage in the European Union (EU) and examines a potential scheme to increase the use of biofuels in the road transport sector; the development of biofuels corridors. An EU biofuels corridor is defined as a long-distance and cross-border route on the Trans-European Transport (TEN-T) Network roads on which blends with a high biofuel content (referred to as high blends) are offered at regular intervals along the entire route. The article first defines the current framework of EU biofuels development. A case study on the feasibility of one possible EU biofuels corridor, from Rotterdam, Netherlands, to Constanta, Romania, is analyzed along four potential biofuels corridor designs (under different future scenarios). The case study includes interviews with key stakeholders, transport flows analysis, refueling infrastructure, and biofuels policy in the relevant member states. The results are extrapolated to the complete EU level in order to assess the potential effect of the biofuels corridor approach as a measure of stimulating the use of biofuels. It is concluded that EU biofuels corridors can increase the use of biofuels. However, if applied as a stand-alone measure a maximum contribution is limited. The effectiveness of biofuels corridors is not larger mainly due to the fact that the transport flows on the TEN-T Network roads are not representative of actual fuel sales at stations on this network (i.e., motorway stations). In addition, various recommendations are made for further research. © 2012 American Society of Civil Engineers.
LINK