BACKGROUND: It is generally unknown to what extent organ transplant recipients can be physically challenged. During an expedition to Mount Kilimanjaro, the tolerance for strenuous physical activity and high-altitude of organ transplant recipients after various types of transplantation was compared to non-transplanted controls.METHODS: Twelve organ transplant recipients were selected to participate (2 heart-, 2 lung-, 2 kidney-, 4 liver-, 1 allogeneic stem cell- and 1 small bowel-transplantation). Controls comprised the members of the medical team and accompanying family members (n = 14). During the climb, cardiopulmonary parameters and symptoms of acute mountain sickness were recorded twice daily. Capillary blood analyses were performed three times during the climb and once following return.RESULTS: Eleven of the transplant participants and all controls began the final ascent from 4700 meters and reached over 5000 meters. Eight transplant participants (73%) and thirteen controls (93%) reached the summit (5895m). Cardiopulmonary parameters and altitude sickness scores demonstrated no differences between transplant participants and controls. Signs of hyperventilation were more pronounced in transplant participants and adaptation to high-altitude was less effective, which was related to a decreased renal function. This resulted in reduced metabolic compensation.CONCLUSION: Overall, tolerance to strenuous physical activity and feasibility of a high-altitude expedition in carefully selected organ transplant recipients is comparable to non-transplanted controls.
DOCUMENT
Op het congres van de Britisch Transplant Society en de Nederlandse Transplantatie Vereniging dat gehouden werd in Bournemouth, Engeland is deze bijgevoegde poster gepresenteerd. De poster beschrijft het onderzoek naar de inspanningstolerantie van mensen na een orgaantransplantatie op grote hoogte, tijdens de beklimming van de Kilimanjaro.
DOCUMENT
No summary available
DOCUMENT
Twirre is a new architecture for mini-UAV platforms designed for autonomous flight in both GPS-enabled and GPS-deprived applications. The architecture consists of low-cost hardware and software components. High-level control software enables autonomous operation. Exchanging or upgrading hardware components is straightforward and the architecture is an excellent starting point for building low-cost autonomous mini-UAVs for a variety of applications. Experiments with an implementation of the architecture are in development, and preliminary results demonstrate accurate indoor navigation
MULTIFILE
In November 2019, the High Performance Greenhouse project (HiPerGreen) was nominated for the RAAK Award 2019, as one of the best applied research projects in the Netherlands. This paper discusses the challenges faced, lessons learned and critical factors in making the project into a success.
DOCUMENT
Airborne wind energy (AWE) systems use tethered flying devices to harvest higher-altitude winds to produce electricity. For the success of the technology, it is crucial to understand how people perceive and respond to it. If concerns about the technology are not taken seriously, it could delay or prevent implementation, resulting in increased costs for project developers and a lower contribution to renewable energy targets. This literature review assessed the current state of knowledge on the social acceptance of AWE. A systematic literature search led to the identification of 40 relevant publications that were reviewed. The literature expected that the safety, visibility, acoustic emissions, ecological impacts, and the siting of AWE systems impact to which extent the technology will be accepted. The reviewed literature viewed the social acceptance of AWE optimistically but lacked scientific evidence to back up its claims. It seemed to overlook the fact that the impact of AWE’s characteristics (e.g., visibility) on people’s responses will also depend on a range of situational and psychological factors (e.g., the planning process, the community’s trust in project developers). Therefore, empirical social science research is needed to increase the field’s understanding of the acceptance of AWE and thereby facilitate development and deployment.
DOCUMENT
The decomposition of a body is influenced by burial conditions, making it crucial to understand the impact of different conditions for accurate grave detection. Geophysical techniques using drones have gained popularity in locating clandestine graves, offering non-invasive methods for detecting surface and subsurface irregularities. Ground-penetrating radar (GPR) is an effective technology for identifying potential grave locations without disturbance. This research aimed to prototype a drone system integrating GPR to assist in grave localization and to develop software for data management. Initial experiments compared GPR with other technologies, demonstrating its valuable applicability. It is suitable for various decomposition stages and soil types, although certain soil compositions have limitations. The research used the DJI M600 Pro drone and a drone-based GPR system enhanced by the real-time kinematic (RTK) global positioning system (GPS) for precision and autonomy. Tests with simulated graves and cadavers validated the system’s performance, evaluating optimal altitude, speed, and obstacle avoidance techniques. Furthermore, global and local planning algorithms ensured efficient and obstacle-free flight paths. The results highlighted the potential of the drone-based GPR system in locating clandestine graves while minimizing disturbance, contributing to the development of effective tools for forensic investigations and crime scene analysis.
MULTIFILE
The decomposition of a body is influenced by burial conditions, making it crucial to understand the impact of different conditions for accurate grave detection. Geophysical techniques using drones have gained popularity in locating clandestine graves, offering non-invasive methods for detecting surface and subsurface irregularities. Ground-penetrating radar (GPR) is an effective technology for identifying potential grave locations without disturbance. This research aimed to prototype a drone system integrating GPR to assist in grave localization and to develop software for data management. Initial experiments compared GPR with other technologies, demonstrating its valuable applicability. It is suitable for various decomposition stages and soil types, although certain soil compositions have limitations. The research used the DJI M600 Pro drone and a drone-based GPR system enhanced by the real-time kinematic (RTK) global positioning system (GPS) for precision and autonomy. Tests with simulated graves and cadavers validated the system’s performance, evaluating optimal altitude, speed, and obstacle avoidance techniques. Furthermore, global and local planning algorithms ensured efficient and obstacle-free flight paths. The results highlighted the potential of the drone-based GPR system in locating clandestine graves while minimizing disturbance, contributing to the development of effective tools for forensic investigations and crime scene analysis.
MULTIFILE
De Noordwaard is a recently established highwater flow area located near the Brabantse Biesbosch. In this area, dykes have been adapted and creeks have been dug, some of which are connected to the Hollands Diep and are subject to tidal influence. A large part of theagricultural land has been transformed into a flow area with nature as a secondary function and is partly grazed by water buffaloes, koniks, Scottish highlanders and sheep. In order to guarantee the flow of the area at high water on the Merwede, additional mowing managementis carried out in addition to grazing in autumn. To this end, all vegetation is reset to the maximum height that has been set as astandard for safety reasons. This mowing is expensive and sometimes contrary to the nature objective in the area, where a great diversity in structures is sought.
DOCUMENT