Agricultural by-products, that is primary residue, industrial by-products and animal manure, are an important source of nutrients and carbon for maintaining soil quality and crop production but can also be valorised through treatment pathways such as fermentation, incineration or a combination of these called bio-refinery. Here, we provide an overview of opportunity to reduce environmental impact of valorising agricultural by-products. We estimate the available by-products in Northwestern Europe as a case study and the maximum and realistic greenhouse gas reduction potentials. Availability, collectability, the original use and environmental impact including land use changes, soil carbon sequestration and pollution swapping are discussed as critical factors when valorising agricultural by-products.
MULTIFILE
In the field of ‘renewable energy resources’ formation of biogas Biomass and biogas: potentials, efficiencies and flexibility is an important option. Biogas can be produced from biomass in a multistep process called anaerobic digestion (AD) and is usually performed in large digesters. Anaerobic digestion of biomass is mediated by various groups of microorganisms, which live in complex community structures. However, there is still limited knowledge on the relationships between the type of biomass and operational process parameters. This relates to the changes within the microbial community structure and the resulting overall biogas production efficiency. Opening this microbial black box could lead to an better understanding of on-going microbial processes, resulting in higher biogas yields and overall process efficiencies.
In the field of ‘renewable energy resources’ formation of biogas is an important option. Biogas can be produced from biomass in a multistep process called anaerobic digestion (AD) and is usually performed in large digesters. Anaerobic digestion of biomass is mediated by various groups of microorganisms, which live in complex community structures. However, there is still limited knowledge on the relationships between the type of biomass and operational process parameters. This relates to the changes within the microbial community structure and the resulting overall biogas production efficiency. Opening this microbial black box could lead to an better understanding of on-going microbial processes, resulting in higher biogas yields and overall process efficiencies.
In het project ‘AgroCycle’ wordt onderzocht of een coöperatie van boerderijen zelfvoorzienend kunnen worden in energie en bemesting door het gebruiken van mest in organische afvalstromen voor de productie van energie, groene brandstof en groene meststoffen door middel anaerobe vergisting. In het project beogen de projectpartners de nutriëntenkringloop (van mest tot digestaat tot groene meststof) te koppelen aan een zelfvoorzienend energiesysteem (biomassa tot biogas tot groene brandstof voor de bewerking van het land) door de gecombineerde productie van biogas en groene meststoffen. De financiële haalbaarheid van een biovergister is sterk afhankelijk van het gebruik en de economische waarde van het digestaat. Met deze gecombineerde aanpak wordt zowel de haalbaarheid als de duurzaamheid (milieueffecten en CO2 - emissies) vergroot. Om de haalbaarheid van dit concept te onderzoeken wordt gebruik gemaakt van het bestaande model ‘BioGas simulator’ dat door de Hanzehogeschool Groningen ontwikkeld is om het technische proces van decentrale productie van biogas te kunnen simuleren.
Het stabiel operationeel houden van anaerobe vergisters van organische afvalstromen (bijvoorbeeld mest, voedselafval of zuiveringsslib) is een grote uitdaging. Veel vergisters draaien daardoor suboptimaal of staan zelfs helemaal stil, met economische schade voor de boer, leveranciers van biovergisters, als samenleving door minder omzetting van circulaire grondstoffen tot bijvoorbeeld vetzuren of methaan. Mechanistische modellen worden toegepast voor geautomatiseerde procesregeling, maar de onderliggende microbiële en fysisch chemische processen zijn dusdanig gecompliceerd dat de regeling weinig robuust is. Daarentegen kan kunstmatige intelligentie –en met name Artificial Neural Network (ANN)– systeemgedrag beschrijven zonder voorkennis van de in de bioreactor optredende mechanismen. ANN-modellen hebben met succes biogasproductie voorspeld en geoptimaliseerd met specifieke input- en outputparameters. Dit voorstel beoogt een Slimme Procesregeling voor Anaerobe VERgisters en geeft de aanzet tot een ANN-model dat in staat is om het vergistingsproces onder verschillende omstandigheden te voorspellen op basis van gegevens verkregen uit literatuuronderzoek en experimenten. Een vervolgproject kan dit uitbouwen naar een nauwkeuriger ANN-model dat een proactieve regelstrategie kan geven voor de vergisters in het werkveld van onder andere de projectpartners HoSt en Methaplanet. Vernieuwend is de kruisbestuiving tussen verwaarding van organische reststromen met kunstmatige intelligentie in een samenwerkingsverband tussen de Saxion-lectoraten Duurzame Energievoorziening, Ambient Intelligence, de UT-vakgroep Discrete Mathematics and Mathematical Programming, genoemde vergisterleveranciers en ToPerform. Dit moet leiden tot een betere benutting van organische reststromen door middel van vergisting. Het voorstel past daarom binnen het thema “Chemische processen en technologie”, van de GoChem-missie Duurzame Chemie. Beoogde projectresultaten zijn: 1. Een trainingsset van empirische data die procesparameters kan relateren aan procesfalen voor verschillende soorten organische reststromen; 2. Een opzet voor een ANN die met geleverde trainingsset de mogelijkheid voor een proactieve regelstrategie voor vergisters aantoont; 3. Een aanzet voor een vervolgproject om de ANN uit te werken tot een proactieve regelstrategie voor de mkb-partners in het werkveld.