Purpose: The aim of this study was to assess physiotherapists’ clinical use and acceptance of a novel telemonitoring platform to facilitate the recording of measurements during rehabilitation of patients following anterior cruciate ligament reconstruction. Additionally, suggestions for platform improvement were explored. Methods: Physiotherapists from seven Dutch private physiotherapy practices participated in the study. Data were collected through log files, a technology acceptance questionnaire and focus group meetings using the “buy a feature” method. Data regarding platform use and acceptance (7-point/11-point numeric rating scale) were descriptively analysed. Total scores were calculated for the features suggested to improve the platform, based on the priority rating (1 = nice to have, 2 = should have, 3 = must have). Results: Participating physiotherapists (N = 15, mean [SD] age 33.1 [9.1] years) together treated 52 patients during the study period. Platform use by the therapists was generally limited, with the number of log-ins per patient varying from 3 to 73. Overall, therapists’ acceptance of the platform was low to moderate, with average (SD) scores ranging from 2.5 (1.1) to 4.9 (1.5) on the 7-point Likert scale. The three most important suggestions for platform improvement were: (1) development of a native app, (2) system interoperability, and (3) flexibility regarding type and frequency of measurements. Conclusions: Even though health care professionals were involved in the design of the telemonitoring platform, use in routine care was limited. Physiotherapists recognized the relevance of using health technology, but there are still barriers to overcome in order to successfully implement eHealth in routine care.
DOCUMENT
BACKGROUND: Causes of anterior cruciate ligament (ACL) injuries are multifactorial. Anterior cruciate ligament injury prevention should thus be approached from a multifactorial perspective as well. Training to resist fatigue is an underestimated aspect of prevention programs given that the presence of fatigue may play a crucial role in sustaining an ACL injury.OBJECTIVES:The primary objective of this literature review was to summarize research findings relating to the kinematic and kinetic effects of fatigue on single-leg landing tasks through a systematic review and meta-analysis. Other objectives were to critically appraise current approaches to examine the effects of fatigue together with elucidating and proposing an optimized approach for measuring the role of fatigue in ACL injury prevention.METHODS:A systematic literature search was conducted in the databases PubMed (1978-November 2017), CINAHL (1992-November 2017), and EMBASE (1973-November 2017). The inclusion criteria were: (1) full text, (2) published in English, German, or Dutch, (3) healthy subjects, (4) average age ≥ 18 years, (5) single-leg jump landing task, (6) evaluation of the kinematics and/or kinetics of the lower extremities before and after a fatigue protocol, and (7) presentation of numerical kinematic and/or kinetic data. Participants included healthy subjects who underwent a fatigue protocol and in whom the effects of pre- and post-fatigue on three-dimensional lower extremity kinematic and kinetics were compared. Methods of data collection, patient selection, blinding, prevention of verification bias, and study design were independently assessed.RESULTS:Twenty studies were included, in which four types of single-leg tasks were examined: the single-leg drop vertical jump, the single-leg drop landing, the single-leg hop for distance, and sidestep cutting. Fatigue seemed to mostly affect initial contact (decreased angles post-fatigue) and peak (increased angles post-fatigue) hip and knee flexion. Sagittal plane variables at initial contact were mostly affected under the single-leg hop for distance and sidestep cutting conditions whilst peak angles were affected during the single-leg drop jump.CONCLUSIONS:Training to resist fatigue is an underestimated aspect of prevention programs given that the presence of fatigue may play a crucial role in sustaining an ACL injury. Considering the small number of variables affected after fatigue, the question arises whether the same fatigue pathways are affected by the fatigue protocols used in the included laboratory studies as are experienced on the sports field.
LINK
Individuals after anterior cruciate ligament reconstruction (ACLR) have a high rate of reinjury upon return to competitive sports. Deficits in motor control may influence reinjury risk and can be addressed during rehabilitation with motor learning strategies. When instructing patients in performing motor tasks after ACLR, an external focus of attention directed to the intended movement effect has been shown to be more effective in reducing reinjury risk than an internal focus of attention on body movements. While this concept is mostly agreed upon, recent literature has made it clear that the interpretation and implementation of an external focus of attention within ACLR rehabilitation needs to be better described. The purpose of this commentary is to provide a clinical framework for the application of attentional focus strategies and guide clinicians towards effectively utilizing an external focus of attention in rehabilitation after ACLR.
DOCUMENT
STUDY DESIGN: Meta-analysis.OBJECTIVES: To define the accuracy of clinical tests for assessing anterior cruciate ligament (ACL) ruptures.BACKGROUND: The cruciate ligaments, and especially the ACL, are among the most commonly injured structures of the knee. Given the increasing injury prevalence, there is undoubtedly a growing need for clinical decision making of health care providers. We reviewed the literature to analyze the diagnostic accuracy of the clinical examination for assessing ACL ruptures.METHODS AND MEASURES: MEDLINE (1966 to April 2005), EMBASE (1989 to April 2005), and CINAHL (1982 to April 2005) searches were performed. Also reference lists of the included studies were reviewed. Studies selected for data extraction were those that addressed the accuracy of at least 1 physical diagnostic test for ACL rupture and compared the performance of the clinical examination of the knee with a reference standard, such as arthroscopy, arthrotomy, or MRI. Searching was limited to English, German, and Dutch languages.RESULTS: Twenty-eight studies that assessed the accuracy of clinical tests for diagnosing ACL ruptures met the inclusion criteria. Study results were, however, heterogeneous. The Lachman test is the most valid test to determine ACL tears, showing a pooled sensitivity of 85% (95% confidence interval [CI], 83-87) and a pooled specificity of 94% (95% CI, 92-95). The pivot shift test is very specific, namely 98% (95% CI, 96-99), but has a poor sensitivity of 24% (95% CI, 21-27). The anterior drawer test shows good sensitivity and specificity in chronic conditions, respectively 92% (95% CI, 88-95) and 91% (95% CI, 87-94), but not in acute conditions.CONCLUSION: In case of suspected ACL injury it is recommended to perform the Lachman test. Because the pivot shift test is very specific both in acute as well as in chronic conditions, it is recommended to perform the pivot shift test as well.
DOCUMENT
Hop tests are frequently used to determine return to sports (RTS) after anterior cruciate ligament reconstruction (ACLR). Given that bilateral deficits are present after ACLR, this may result in a falsely high limb symmetry index (LSI), since LSI is calculated as a ratio between the values of the limbs.HypothesisAthletes after ACLR would achieve LSI > 90% for the hop test. Secondly, athletes after ACLR demonstrate decreased jump distance on the single hop for distance (SLH) and triple leg hop for distance (TLH) and decreased number of hops for the side hop (SH) for both involved and uninvolved limbs compared to normative data of sex, age and type of sports matched healthy athletes.Materials and MethodsFifty-two patients (38 males mean age 23.9 ±3.5 yrs; 14 females mean age 21.7±3.5 years) who had undergone an ACLR participated in this study. Patients performed the 3 hop tests at a mean time of 7.0 months after ACLR. Hop distance, number of side hops and LSI were compared with normative data of 188 healthy athletes.ResultsThe differences between the involved limb and the uninvolved limb were significant in all hop tests (SLH p=0.003, TLH p=0.003 , SH p=0.018). For females, only significant between limb differences were found in the SLH (p=0.049). For both the SLH and the TLH, significant differences were found between the involved limb and the normative data (males; SLH p<0.001, TLH p<0.001; females; SLH p<0.001, TLH p=0.006) and between the uninvolved limb and the normative data for both males and females (males; SLH p<0.001, TLH p<0.001; females; SLH p=0.003, TLH p=0.038). For the SH, only significant differences were found between the involved limb and the normative values in males (p=0.033).ConclusionAthletes who have undergone an ACLR demonstrate bilateral deficits on hop tests in comparison to age and sex matched normative data of healthy controls. Using the LSI may underestimate performance deficits and should therefore be analyzed with caution when used as a criterion for RTS after ACLR.
DOCUMENT
Benjaminse, A, Nijmeijer, EM, Gokeler, A, Broekhaar, DC, and Cortes, N. Motivation unraveled: giving choice to football players to improve anterior cruciate ligament injury prevention. J Strength Cond Res 38(12): e735–e743, 2024—Providing athletes some control over a training session facilitates motor skill acquisition. This is a promising concept to use in anterior cruciate ligament (ACL) injury prevention, as the key for risk reduction is to improve quality of movement. The goal of this study was to better understand why improved motor learning occurred when football players had the opportunity to choose when to receive feedback when practicing sidestep cutting (SSC) movements. Healthy male recreational football players (n 5 22, 22.9 6 1.7 years, 185.5 6 7.2 cm, 79.3 6 9.2 kg) were included and assigned to the self-control (SC) or the yoked (YK) group. The players performed anticipated and unanticipated SSC. They received video instructions and were instructed to “copy the movement of the model to the best of their ability.” During the training blocks, the SC group could ask for feedback, whereas the YK group could not. Cutting movement assessment scores (CMAS) were measured to test quality of movement and the Intrinsic Motivation Inventory was administered to measure constructs of motivation. In the anticipated condition, SC group showed better scores in immediate post and the retention test compared with pretest (p, 0.001), whereas the YK group showed worse scores in the retention test compared with immediate posttest (p 5 0.001). Perceived competence (p 5 0.017) and self-efficacy (p 5 0.032) were consistent factors that correlated with improved CMAS in the SC group. This has given us innovative insights into underlying mechanisms optimizing the quality of movement, necessary to improve current ACL injury prevention approaches.
DOCUMENT
Athletes in team sports have to quickly visually perceive actions of opponents and teammates while executing their own movements. These continuous actions are performed under time pressure and may contribute to a non-contact ACL injury. However, ACL injury screening and prevention programmes are primarily based on standardised movements in a predictable environment. The sports environment provides much greater cognitive demand because athletes must attend their attention to numerous external stimuli and inhibit impulsive actions. Any deficit or delay in attentional processing may contribute to an inability to correct potential errors in complex coordination, resulting in knee positions that increase the ACL injury risk. In this viewpoint, we advocate that ACL injury screening should include the sports specific neurocognitive demands.
DOCUMENT
The aim of the present study was to investigate if the presence of anterior cruciate ligament (ACL) injury risk factors depicted in the laboratory would reflect at-risk patterns in football-specific field data. Twenty-four female footballers (14.9 ± 0.9 year) performed unanticipated cutting maneuvers in a laboratory setting and on the football pitch during football-specific exercises (F-EX) and games (F-GAME). Knee joint moments were collected in the laboratory and grouped using hierarchical agglomerative clustering. The clusters were used to investigate the kinematics collected on field through wearable sensors. Three clusters emerged: Cluster 1 presented the lowest knee moments; Cluster 2 presented high knee extension but low knee abduction and rotation moments; Cluster 3 presented the highest knee abduction, extension, and external rotation moments. In F-EX, greater knee abduction angles were found in Cluster 2 and 3 compared to Cluster 1 (p = 0.007). Cluster 2 showed the lowest knee and hip flexion angles (p < 0.013). Cluster 3 showed the greatest hip external rotation angles (p = 0.006). In F-GAME, Cluster 3 presented the greatest knee external rotation and lowest knee flexion angles (p = 0.003). Clinically relevant differences towards ACL injury identified in the laboratory reflected at-risk patterns only in part when cutting on the field: in the field, low-risk players exhibited similar kinematic patterns as the high-risk players. Therefore, in-lab injury risk screening may lack ecological validity.
DOCUMENT
Primary anterior cruciate ligament (ACL) injury prevention programs effectively reduce ACL injury risk in the short term. Despite these programs, ACL injury incidence is still high, making it imperative to continue to improve cur- rent prevention strategies. A potential limitation of current ACL injury prevention training may be a deficit in the transfer of conscious, optimal movement strategies rehearsed during training sessions to automatic movements required for athletic activities and unanticipated events on the field. Instructional strategies with an internal focus of attention have traditionally been utilized, but may not be optimal for the acquisition of the control of complex motor skills required for sports. Conversely, external-focus instructional strategies may enhance skill acquisition more efficiently and increase the transfer of improved motor skills to sports activities. The current article will present in- sights gained from the motor-learning domain that may enhance neuromuscular training programs via improved skill development and increased reten- tion and transfer to sports activities, which may reduce ACL injury incidence in the long term.
DOCUMENT
Although the benefits of current anterior cruciate ligament (ACL) injury prevention programmes have been demonstrated in efficacy studies, they, unfortunately, have had limited public health impact to date. For example, the incidence of ACL injuries continues to rise in adolescent athletes. Raising awareness and educating coaches and athletes is not enough to facilitate the widespread, sustained use of these programmes in the real-world setting. Considering the profound burden of ACL injuries, it is necessary to continue to improve the current ACL injury prevention programmes through co-creation. First, the uptake of the programmes should be optimized by a better appreciation and understanding of the individual, socio-cultural and environmental context (i.e., community). Second, the content of the programmes should be optimized to better reflect the demands of the sport by creating more ownership and increasing motivation (incorporating challenging, sport-specific and fun elements) with the end-users. In addition, implicit motor learning, random practice and differential learning are concepts that should be integrated when practising to obtain the most optimal results when learning or finetuning skills.
LINK