We report research into the evolvement of a hybrid learning environment where education, companies and government successfully cooperate. This hybrid learning environment—one of the latest inventions in curriculum design—is special because it was neither intended nor planned by the parties involved. With some self-astonishment, the participants in this research experienced a growing acknowledgement of their emerging educational creation, aside from the experience of and appreciation for their cooperation and the increasing turnover. With a bricolage research approach within the scope of a rhizomatic perspective on becoming, a multivocal perspective on the evolvement of the learning environment was pursued. In emphasizing the historical evolvement of the learning environment, our findings challenge the tradition of drawing board design, accompanied by an appeal for re-appreciating professional craftsmanship. In addition, some reflections regarding the research are discussed.
In the aviation sector, the variability in the appreciation of safety risk perception factors and responses to risk behaviours has not been sufficiently studied for engineers and technicians. Through a questionnaire survey, this study investigated differences amongst professionals and trainees across eleven risk perception factors and five indicative risk behaviour scenarios. The findings indicated significant differences between the two groups in four factors and three scenarios as well as within groups. Moreover, age, years of work and study and educational level were other factors accounting for such differences within each group of professionals and trainees. The results showing these significant differences are aligned with relevant research about pilots and indicate that the appreciation of risk perception factors by aviation engineers and the development of their risk behaviours deserves more attention. Our findings cannot be generalised due to the small sample and its distribution across the demographic variables. However, the results of this study suggest the need tailoring risk communication and training to address the different degrees to which influences of risk perception factors are comprehended, and risk behaviours emerge in aviation engineering trainees and professionals. Further research could focus on the development of a respective uniform framework and tool for the specific workforce group and could administer surveys to more extensive and more representative samples by including open-ended questions and broader social, organisational and systemic factors.
Described are the results of a study that was set up to get insight into the appreciation of students for distance learning, especially concerning online lab-experiments. We wanted to know whether an online lab-experiment is more or less effective than a regular one and how it can be used in IPD-projects. Preliminary data analyses have shown that the appreciation of an online lab-experiment is dependent on a number of items, like the educational contents of the experiment itself, the way accompanying theory is presented, possibilities of doing the experiment in an alternative way, the organization around the experiment etc. It appears also that students give serious suggestions on developing other online lab-experiments and the way to use it in IPD-projects. A description is given of the web-based experiment "cube measurement", which is carried out using a remotely operated robot and image processing functions. The students' appreciation is discussed and suggestions are given on how comparable experiments can contribute to work in an IPD environment.
The project focuses on sustainable travel attitude and behaviour with attention to balance, liveability, impact and climate change (as indicated above). The customer journey is approached from the consumer side and intends to shed light on the way COVID-19 has influenced (or not) the following aspects:• consumer’s understanding and appreciation of sustainability • the extent to which this understanding has influenced their attitude towards sustainable travel choices• the extent to which this change is represented in their actual and projected travel behaviour throughout the travel decision-making process • conditions that may foster a more sustainable travel behaviourThe project can be seen as a follow up to existing studies on travel intention during and post COVID-19, such as ETC’s publication on Monitoring sentiment for domestic and Intra-European travel – Wave 5, or the joint study of the European Tourism Futures Institute (ETFI – www.etfi.nl) and the Centre of Expertise in Leisure, Tourism and Hospitality (CELTH – www.celth.nl) highlighting four future scenarios for the leisure, tourism and hospitality sectors post COVID-19. The project will look beyond travel intention and will supplement existing knowledge with crucial information on the way consumers view sustainability and the extent to which they are willing to adjust their travel behaviour to aid the recovery of a more sustainable travel and tourism industry. Therefore, the report aims to generate knowledge vital for the understanding of consumer trends and the role sustainability will play in travel choices in the near future.Problem statementPlease describe which question in the (participating) industry is addressed.How has the sustainable travel attitude and behaviour in selected European source markets been influenced by the COVID-19 pandemic? Further questions to be answered:• How did the COVID-19 pandemic influence the consumer’s understanding and appreciation of sustainability?• To what extent did this understanding influence their attitude towards sustainable travel choices?• To what extent is this change represented in their actual and projected travel behaviour throughout the travel decision-making process?• What are the conditions that may foster a more sustainable travel behaviour?
De fotonica industrie groeit snel in de Brainport regio. Multinationals zoals ASML maar ook talrijke MKB bedrijven werken aan complexe optische systemen. Zij concurreren op wereldschaal met high tech Amerikaanse en Aziatische spelers. Innovatie is daarvoor van levensbelang. R&D in de sleuteltechnologieën fotonica en geavanceerde fabricagesystemen levert hiervoor de hoognodige brandstof. Zo ook in dit project, waarbij twee high tech MKB bedrijven met Fontys 3D-metaalprinten op een nieuwe en slimme manier gaan inzetten voor fotonica. Complexe optische systemen bevatten meestal meerdere optische elementen (o.a. lenzen, spiegels, diafragma’s, lichtbronnen, sensoren) die onderling in een lichtweg gerangschikt en onderling afgesteld moeten worden. Hierbij worden z.g. optische mounts gebruikt om de positie van de individuele optische elementen vast te leggen en na afstelling te fixeren. Een dergelijke afstelmethode is vaak lastig (divergerend), tijdrovend en niet stabiel over de tijd (want gebaseerd op wrijvingsfixatie). Dit project onderzoekt als oplossing een geïntegreerd monolithisch 3D geprint montagesysteem voor optische elementen, waarbij gebruik gemaakt wordt van ruimtelijk georiënteerde 3D geprinte monolithische elementen (spelings- en hysteresevrij). Hiermee wordt de insteltijd aanzienlijk gereduceerd (doelstelling: 100% --> 30%). Tevens zal de positioneernauwkeurigheid van de hierin opgenomen optische elementen gegarandeerd zijn. Tenslotte zullen er aanzienlijk minder onderdelen in het ontwerp aanwezig zijn. Als concrete en haalbare demonstrator wordt een 3D geprinte monolithische optical mount voor de lichtweg van de “Arinna” laserinterferometer van IBSPE uit Eindhoven ontwikkeld en getest. 3D geprinte optical mounts zijn nieuw voor dit netwerk, maar Fontys en aangesloten ondernemers hebben de relevante ervaring in 3D metaalprinten en fotonica. Met de aangesloten fotonica netwerken Photon Delta, DSPE en PhotonicsNL kan de opgedane kennis snel opgeschaald worden en kunnen ook andere MKB bedrijven deze innovatieve mounts voor hun supply chains gaan onderzoeken.
"Speak the Future" presents a novel test case at the intersection of scientific innovation and public engagement. Leveraging the power of real-time AI image generation, the project empowers festival participants to verbally describe their visions for a sustainable and regenerative future. These descriptions are instantly transformed into captivating imagery using SDXL Turbo, fostering collective engagement and tangible visualisation of abstract sustainability concepts. This unique interplay of speech recognition, AI, and projection technology breaks new ground in public engagement methods. The project offers valuable insights into public perceptions and aspirations for sustainability, as well as understanding the effectiveness of AI-powered visualisation and regenerative applications of AI. Ultimately, this will serve as a springboard for PhD research that will aim to understand How AI can serve as a vehicle for crafting regenerative futures? By employing real-time AI image generation, the project directly tests its effectiveness in fostering public engagement with sustainable futures. Analysing participant interaction and feedback sheds light on how AI-powered visualisation tools can enhance comprehension and engagement. Furthermore, the project fosters public understanding and appreciation of research. The interactive and accessible nature of "Speak the Future" demystifies the research process, showcasing its relevance and impact on everyday life. Moreover, by directly involving the public in co-creating visual representations of their aspirations, the project builds an emotional connection and sense of ownership, potentially leading to continued engagement and action beyond the festival setting. "Speak the Future" promises to be a groundbreaking initiative, bridging the gap between scientific innovation and public engagement in sustainability discourse. By harnessing the power of AI for collective visualisation, the project not only gathers valuable data for researchers but also empowers the public to envision and work towards a brighter, more sustainable future.