At this moment, no method is available to objectively estimate the temperature to which skeletal remains have been exposed during a fire. Estimating this temperature can provide crucial information in a legal investigation. Exposure of bone to heat results in observable and measurable changes, including a change in colour. To determine the exposure temperature of experimental bone samples, heat related changes in colour were systemically studied by means of image analysis. In total 1138 samples of fresh human long bone diaphysis and epiphysis, varying in size, were subjected to heat ranging from room temperature to 900 °C for various durations and in different media. The samples were scanned with a calibrated flatbed scanner and photographed with a Digital Single Lens Reflex camera. Red, Green, Blue values and Lightness, A-, and B-coordinates were collected for statistical analysis. Cluster analysis showed that discriminating thresholds for Lightness and B-coordinate could be defined and used to construct a model of decision rules. This model enables the user to differentiate between seven different temperature clusters with relatively high precision and accuracy. The proposed decision model provides an objective, robust and non-destructive method for estimating the exposure temperature of heated bone samples.
MULTIFILE
This paper puts forward a conceptual proposition that ties the discourses on ‘urban memory’ (Stillman and Johanson, 2009; Ringas, Christopoulou, Stefanidakis., 2011; Loughran, Fine & Hunter, 2015), sensory ethnography (Pink 2017 ), and counter-mapping (Crampton and Krygier 2018; ) with digital methods (Rogers, Sánchez-Querubín, and Kil, 2015). As an ‘interventionist’ approach, we understand co-producing counter (dynamic) maps with local stakeholders (actors), coupled with sensory and sentient data as a way of capturing the memory of urban peripheral landscapes (through intervention and participation) and thus creating archival knowledge.Urban memory is often understood as a form of collective memory that isconstituted by individual experiences within the place itself and through its historyand social environment (Ringas et al., 2011). With rapid changes in digitaltechnologies, digital and material have become “inseparate and entangled inenvironments people move and navigate their lives through'' (Pink and Fors, 2017).Memories are “evoked with material engagement with devices” which “opens up afield of sensory and affective engagement” research (ibid). While Pink and Forspropose to follow such engagement in a mundane and everyday setting, seen as anon-representational, phenomenological approach, we put forward a mixedmethods approach that connects sensory and sentient data (as agents) with the largerenvironmental context.Urban areas are often conceptualized as sites of ‘creative destruction’, in between stability and change, space (that can be developed) and place (that is lived in), often subjected to planning, regulation, and economic forces (Batty, 2007). This is especially true for urban areas that are located outside of the ‘center’ or in the cities’ periphery. These areas have experienced an endless cycle of deconstruction and reconstruction often witnessed and captured by local inhabitants, creatives, and activists. Currently, many of the peripheral areas are emancipating, bringing forward and openly communicating their complexities, values, and engaging various stakeholders in their regeneration efforts (which happens in a broader context of many European cities repositioning themselves in more polycentric and polyphonic ways, (Scott, 2015).To be able to capture the memory of ever-changing, ‘built a new’ urban places, we put forward counter (dynamic) mapping using digital methods as complemented with sensory and sentient data generated through interactions with digital technologies. Building on Crampton’s notion of maps (Crampton and Krygier, 2018), cartography is understood as existence (becoming) rather than essence (fixed ontology). Maps are therefore taken not as ‘objects’, but as performative practices. Digital methods, on the other hand, enable us to understand dynamic place-making, through ‘tracing’ the stakeholders (actors) and their relations overtime to capture the ways the urban environment gets performed.To clarify with an example, in Spinoza Imaginaries Lab & Cafe situated inAmsterdam Southeast we have been capturing the ever changing urbanenvironment in partnership with local stakeholders (actors), mapping their evolvingrelationships (and grouping) using the IssueCrawler and sentient data co-gatheredby researchers and students, with the clear understanding that to be able to capturea place, it is important to map the vernacular knowledge of that place (imaginaries,including art, movies, unrealized plans and initiatives, etc.). We propose this mixedmethods approach as an epistemological practice geared towards archiving thedynamic state of urban peripheral landscapes.
MULTIFILE
Urban flooding has become a key issue for many cities around the world. The project ‘INnovations for eXtreme Climatic EventS’ (INXCES) developed new innovative technological methods for risk assessment and mitigation of extreme hydroclimatic events and optimization of urban water-dependent ecosystem services at the catchment level. DEMs (digital elevation maps) have been used for more than a decade now as quick scan models to indicate locations that are vulnerable to urban flooding. In the last years the datasets are getting bigger and multidisciplinary stakeholders are becoming more demanding and require faster and more visual results. In this paper, the development and practical use of DEMs is exemplified by the case study of Bergen (Norway), where flood modelling using DEM is carried out in 2017 and in 2009. We can observe that the technology behind tools using DEMs is becoming more common and improved, both with a higher accuracy and a higher resolution. Visualization tools are developed to raise awareness and understanding among different stakeholders in Bergen and around the world. We can conclude that the evolution of DEMS is successful in handling bigger datasets and better (3D) visualization of results with a higher accuracy and a higher resolution. With flood maps the flow patterns of stormwater are analysed and locations are selected to implement (sub-)surface measures as SuDS (Sustainable Urban Drainage systems) that store and infiltrate stormwater. In the casestudy Bergen the following (sub-)surface SuDS have been recently implemented with the insights of DEMS: settlement storage tank, rainwater garden, swales, permeable pavement and I/T-drainage. The research results from the case study Bergen will be shared by tools to stimulate international knowledge exchange. New improved DEMs and connected (visualization) tools will continue to play an important role in (sub-)surface flood management and climate resilient urban planning strategies around the world.