Het doel van dit is boek is om de lezer te wijzen op de gevarieerde en innovatieve methodes om de 'lessen' informatievaardigheden, die reeds geïntegreerd zijn in het curriculum, te beoordelen en na die beoordeling (eventueel) te verbeteren.
DOCUMENT
Educational programs teaching entrepreneurial behaviour and knowledge are crucial to a vital and healthy economy. The concept of building a Communities of Practice (CoP) could be very promising. CoP’s are formed by people who engage in a process of collective learning in a shared domain of human endeavour (Wenger, McDermott and Snyder, 2002). They consist of a group of people who share a concern or a passion for something they do and learn how to do it better as they interact regularly. Normally CoP’s are rather homogeneous. Saxion institute Small Business & Retail Management (SB&RM) started a CoP with entrepreneurs September 2007. Typical in the this community, are the differences between the partners. The Community consists of students, entrepreneurs and members of an institution for higher education. They have different characteristics and they don’t share the same knowledge. Thus, building long-lasting relations can be complicated. Solid relations for longer periods are nevertheless inevitable in using CoP as a mean in an educational concept that takes approximately 4 years. After one year an evaluation took place on the main aspects of a lasting partnership. The central problem SB&RM in Deventer faces is to design the CoP in a way possible members will join and stay for a longer period and in a way it ensures entrepreneurial learning. This means important design characteristics have to be identified, and the CoP in Deventer has to be evaluated to assess whether it meets those design characteristics in an effective and efficient way. The main target of the evaluation is to determine which key factors are important to make sure continuity in partnership is assured and entrepreneurial learning is best supported. To solve the problem, an investigation on how a CoP works, what group dynamics take place, and how this can be measured has to be conducted. Furthermoreusing the CoP as a tool for entrepreneurship means key aspects of entrepreneurial learning have to be identified. After that the CoP in Deventer has to be examined on both aspects. According to literature CoP’s define themselves along three dimensions: domain (indicating what is it about), community (defining how it functions), and practice (indicating what capabilities it has produced) (Wenger, 1998). This leads to meaningful, shared and coordinated activities (Akkerman et al, 2007): Key aspects of a successful CoP lie in both hard and soft sides of creating a partnership. It means on one hand a CoP has to deal with defining their own overall vision, formulating long term goals and targets on the short term. They have to formulate how to achieve those targets and create meaningful activities (reification). On the other hand a CoP has to deal with relations, trust, norms and values (participation). Reification and participation as design characteristic can provide indicators on which the CoP in Deventer can be evaluated. A lasting partnership means joining the CoP and staying. Weick provides us with a suitable model that enables us to do research and evaluate whether the CoP in Deventer is successful or not, Weick’s model of means convergence. To effectively ensure entrepreneurial learning the process in the CoP has to provide or enable actionoriented forms through Project-based activity, accompanied by reflection, with high emotional exposure (or cognitive affection) preferably caused by discontinuities to be suitable as a tool in entrepreneurial learning. Furthermore it should be accompanied by the right preconditions to work effectively and efficiently. The evaluation of the present CoP in Deventer is done by interviewing all participants at the end of the first year of the partnership. In a structured interview, based on literature studies, all participants were separately questioned
MULTIFILE
De Digitale Universiteit (DU) performed a quickscan to determine the usability of the IMS Question and TestInteroperability (QTI) specification as a format to store questions and tests developed for and by the consortium. The original report is available in Dutch from the website of De Digitale Universiteit and an unofficial English translation of that report can be downloaded. In October 2003, Canvas Learning Ltd., developers of the Canvas Canvas Learning Author and Canvas Learning Player responded to the Quickscan by sending their Canvas Flash player which could also render the test questions developed for the Quickscan. The Canvas Learning Player hadn't been tested as part of the original Quickscan because none of the partners within De Digitale Universiteit was using the application at that time. This addendum contains a short overview of the results of the tests for the Flash player as it was provided by Canvas Learning Ltd. All tests have been conducted by the author of the quickscan using the original test set. The set and the player used can be downloaded as a SCORM compliant package.
DOCUMENT
Post-earthquake structural damage shows that wall collapse is one of the most common failure mechanisms in unreinforced masonry buildings. It is expected to be a critical issue also in Groningen, located in the northern part of the Netherlands, where human-induced seismicity has become an uprising problem in recent years. The majority of the existing buildings in that area are composed of unreinforced masonry; they were not designed to withstand earthquakes since the area has never been affected by tectonic earthquakes. They are characterised by vulnerable structural elements such as slender walls, large openings and cavity walls. Hence, the assessment of unreinforced masonry buildings in the Groningen province has become of high relevance. The abovementioned issue motivates engineering companies in the region to research seismic assessments of the existing structures. One of the biggest challenges is to be able to monitor structures during events in order to provide a quick post-earthquake assessment hence to obtain progressive damage on structures. The research published in the literature shows that crack detection can be a very powerful tool as an assessment technique. In order to ensure an adequate measurement, state-of-art technologies can be used for crack detection, such as special sensors or deep learning techniques for pixel-level crack segmentation on masonry surfaces. In this project, a new experiment will be run on an in-plane test setup to systematically propagate cracks to be able to detect cracks by new crack detection tools, namely digital crack sensor and vision-based crack detection. The validated product of the experiment will be tested on the monument of Fraeylemaborg.
Human kind has a major impact on the state of life on Earth, mainly caused by habitat destruction, fragmentation and pollution related to agricultural land use and industrialization. Biodiversity is dominated by insects (~50%). Insects are vital for ecosystems through ecosystem engineering and controlling properties, such as soil formation and nutrient cycling, pollination, and in food webs as prey or controlling predator or parasite. Reducing insect diversity reduces resilience of ecosystems and increases risks of non-performance in soil fertility, pollination and pest suppression. Insects are under threat. Worldwide 41 % of insect species are in decline, 33% species threatened with extinction, and a co-occurring insect biomass loss of 2.5% per year. In Germany, insect biomass in natural areas surrounded by agriculture was reduced by 76% in 27 years. Nature inclusive agriculture and agri-environmental schemes aim to mitigate these kinds of effects. Protection measures need success indicators. Insects are excellent for biodiversity assessments, even with small landscape adaptations. Measuring insect biodiversity however is not easy. We aim to use new automated recognition techniques by machine learning with neural networks, to produce algorithms for fast and insightful insect diversity indexes. Biodiversity can be measured by indicative species (groups). We use three groups: 1) Carabid beetles (are top predators); 2) Moths (relation with host plants); 3) Flying insects (multiple functions in ecosystems, e.g. parasitism). The project wants to design user-friendly farmer/citizen science biodiversity measurements with machine learning, and use these in comparative research in 3 real life cases as proof of concept: 1) effects of agriculture on insects in hedgerows, 2) effects of different commercial crop production systems on insects, 3) effects of flower richness in crops and grassland on insects, all measured with natural reference situations
Post-earthquake structural damage shows that wall collapse is one of the most common failure mechanisms in unreinforced masonry buildings. It is expected to be a critical issue also in Groningen, located in the northern part of the Netherlands, where human-induced seismicity has become an uprising problem in recent years. The majority of the existing buildings in that area are composed of unreinforced masonry; they were not designed to withstand earthquakes since the area has never been affected by tectonic earthquakes. They are characterised by vulnerable structural elements such as slender walls, large openings and cavity walls. Hence, the assessment of unreinforced masonry buildings in the Groningen province has become of high relevance. The abovementioned issue motivates engineering companies in the region to research seismic assessments of the existing structures. One of the biggest challenges is to be able to monitor structures during events in order to provide a quick post-earthquake assessment hence to obtain progressive damage on structures. The research published in the literature shows that crack detection can be a very powerful tool as an assessment technique. In order to ensure an adequate measurement, state-of-art technologies can be used for crack detection, such as special sensors or deep learning techniques for pixel-level crack segmentation on masonry surfaces. In this project, a new experiment will be run on an in-plane test setup to systematically propagate cracks to be able to detect cracks by new crack detection tools, namely digital crack sensor and vision-based crack detection.