Sport injuries are most often caused by overstraining. Injuries not only have an impact on the quality of life of athletes but can also incur high costs to sports clubs, due to the players’ absence. The main goal is to have a tool, which can advise trainers to optimise training per individual athlete in order to reach peak performace and reduce injuries.
MULTIFILE
Among runners, there is a high drop-out rate due to injuries and loss of motivation. These runners often lack personalized guidance and support. While there is much potential for sports apps to act as (e-)coaches to help these runners to avoid injuries, set goals, and maintain good intentions, most available running apps primarily focus on persuasive design features like monitoring, they offer few or no features that support personalized guidance (e.g., personalized training schemes). Therefore, we give a detailed description of the working mechanism of Inspirun e-Coach app and on how this app uses a personalized coaching approach with automatic adaptation of training schemes based on biofeedback and GPS-data. We also share insights into how end-users experience this working mechanism. The primary conclusion of this study is that the working mechanism (if provided with accurate data) automatically adapts training sessions to the runners’ physical workload and stimulates runners’ goal perception, motivation, and experienced personalization. With this mechanism, we attempted to make optimal use of the potential of wearable technology to support the large group of novice or less experienced runners and that by providing insight in our working mechanisms, it can be applied in other technologies, wearables, and types of sports.
Training-induced adaptations in muscle morphology, including their magnitude and individual variation, remain relatively unknown in elite athletes. We reported changes in rowing performance and muscle morphology during the general and competitive preparation phases in elite rowers. Nineteen female rowers completed 8 weeks of general preparation, including concurrent endurance and high-load resistance training (HLRT). Seven rowers were monitored during a subsequent 16 weeks of competitive preparation, including concurrent endurance and resistance training with additional plyometric loading (APL). Vastus lateralis muscle volume, physiological cross-sectional area (PCSA), fascicle length, and pennation angle were measured using 3D ultrasonography. Rowing ergometer power output was measured as mean power in the final 4 minutes of an incremental test. Rowing ergometer power output improved during general preparation [+2 ± 2%, effect size (ES) = 0.22, P = 0.004], while fascicle length decreased (−5 ± 8%, ES = −0.47, P = 0.020). Rowing power output further improved during competitive preparation (+5 ± 3%, ES = 0.52, P = 0.010). Here, morphological adaptations were not significant, but demonstrated large ESs for fascicle length (+13 ± 19%, ES = 0.93), medium for pennation angle (−9 ± 15%, ES = −0.71), and small for muscle volume (+8 ± 13%, ES = 0.32). Importantly, rowers showed large individual differences in their training-induced muscle adaptations. In conclusion, vastus lateralis muscles of elite female athletes are highly adaptive to specific training stimuli, and adaptations largely differ between individual athletes. Therefore, coaches are encouraged to closely monitor their athletes' individual (muscle) adaptations to better evaluate the effectiveness of their training programs and finetune them to the athlete's individual needs.