The purpose of this study was to examine the feasibility and validity of an Athletic Skills Track (AST) to assess fundamental movement skills among 6- to 12-year-old children in a physical education setting. 463 Dutch children (211 girls, 252 boys) completed three tests: the Körperkoordination-Test für Kinder (KTK) and two Athletic Skills Tracks (AST-1, AST-2). The validity of AST-1 and AST-2 was examined by correlating the time (sec) needed to complete the tracks and the KTK Motor Quotient (KTK MQ). Overall, there was a small correlation between AST-1 and the KTK MQ (r = - 0.474 (p = 0.01)) and a medium correlation between AST-2 and the KTK MQ (r = - 0.502 (p = 0.01)). When split up by age group the associations between the Athletic Skills Tracks and the KTK MQ were large for 12-year old children (AST-1: r = - 0.767; AST-2: r = - 0.727) and smallest for 8-year olds with a medium association (AST-1: r = - 0.501; AST-2: r = - 0.469). The results suggest that children’s motor skills can be assessed with a quick, convenient, and low-cost motor competence test in a physical education setting, i.e. an Athletic Skills Track. This is an Accepted Manuscript of an article published by Taylor & Francis in "Journal of Sports Sciences" on 3 March 2016, available online: https://doi.org/10.1080/02640414.2016.1151920
MULTIFILE
The Athletic Skills Model offers an alternative to dominant talent development theories in the form of holistic broad-based movement education, focusing on health and wellbeing. It places the emphasis on ‘physical intelligence’ – including attributes such as agility, flexibility and stability – through adaptable and varied training programmes, creating a skilled athlete before introducing sport specialization.The book sets out the scientific underpinnings of the ASM before going on to offer practical guidance on the content of the programme, how to adapt and vary the programme, and how to apply the approach to different age groups and sports. The ASM’s application in the youth development programme at AFC Ajax is explored in depth, before a future of talent development with an emphasis on athletic, rather than sport-specific, expertise is imagined.The Athletic Skills Model introduces an important and timely challenge to conventional wisdom in talent development and is a fascinating read for any upper-level student or researcher interested in youth development, skill acquisition, motor learning or sports coaching, and any coaches wanting to refresh their approach to talent development.
DOCUMENT
Non-professional runners make extensive use of consumer-available wearable devices and smartphone apps to monitor training sessions, health, and physical performance. Despite the popularity of these products, they usually neglect subjective factors, such as psychosocial stress, unexpected daily physical (in)activity, sleep quality perception, and/or previous injuries. Consequently, the implementation of these products may lead to underperformance, reduced motivation, and running-related injuries. This paper investigates how the integration of subjective training, off-training, and contextual factors from a 24/7 perspective might lead to better individual screening and health protection methods for recreational runners. Using an online-based Ecological Momentary Assessment survey, a seven-day cohort study was conducted. Twenty participants answered daily surveys three times a day regarding subjective off-training and contextual data; e.g., health, sleep, stress, training, environment, physiology, and lifestyle factors. The results show that daily habits of people are unstructured, unlikely predictable, and influenced by factors, such as the demands of work, social life, leisure time, or sleep. By merging these factors with sensor-based data, running-related systems would be able to better assess the individual workload of recreational runners and support them to reduce their risk of suffering from running-related injuries
DOCUMENT
Athlete development depends on many factors that need to be balanced by the coach. The amount of data collected grows with the development of sensor technology. To make data-informed decisions for training prescription of their athletes, coaches could be supported by feedback through a coach dashboard. The aim of this paper is to describe the design of a coach dashboard based on scientific knowledge, user requirements, and (sensor) data to support decision making of coaches for athlete development in cyclic sports. The design process involved collaboration with coaches, embedded scientists, researchers, and IT professionals. A classic design thinking process was used to structure the research activities in five phases: empathise, define, ideate, prototype, and test phases. To understand the user requirements of coaches, a survey (n = 38), interviews (n = 8) and focus-group sessions (n = 4) were held. Design principles were adopted into mock-ups, prototypes, and the final coach dashboard. Designing a coach dashboard using the co-operative research design helped to gain deep insights into the specific user requirements of coaches in their daily training practice. Integrating these requirements, scientific knowledge, and functionalities in the final coach dashboard allows the coach to make data-informed decisions on training prescription and optimise athlete development.
DOCUMENT
The main aim of this study was to determine the agreement in classification between the modified KörperKoordinations Test für Kinder (KTK3+) and the Athletic Skills Track (AST) for measuring fundamental movement skill levels (FMS) in 6- to 12-year old children. 3,107 Dutch children (of which 1,625 are girls) between 6 and 12 years of age (9.1 ± 1.8 years) were tested with the KTK3+ and the AST. The KTK3+ consists of three items from the KTK and the Faber hand-eye coordination test. Raw scores from each subtest were transformed into percentile scores based on all the data of each grade. The AST is an obstacle course consisting of 5 (grades 3 till 5, 6–9 years) or 7 (grades 6 till 8, 9–12 years) concatenated FMS that should be performed as quickly as possible. The outcome measure is the time needed to complete the track. A significant bivariate Pearson correlation coefficient of 0.51 was found between the percentile sum score of the KTK3+ and the time to complete the AST, indicating that both tests measure a similar construct to some extent. Based on their scores, children were classified into one of five categories: <5, 5–15, 16–85, 86–95 or >95%. Cross tabs revealed an agreement of 58.8% with a Kappa value of 0.15 between both tests. Less than 1% of the children were classified more than two categories higher or lower. The moderate correlation between the KTK3+ and the AST and the low classification agreement into five categories of FMS stress the importance to further investigate the test choice and the measurement properties (i.e., validity and reliability) of both tools. PE teachers needs to be aware of the context in which the test will be conducted, know which construct of motor competence they want to measure and know what the purpose of testing is (e.g., screening or monitoring). Based on these considerations, the most appropriate assessment tool can be chosen.
MULTIFILE
Previous research shows that power training can increase power output in older adults and may also improve physical performance, physical functioning, and independence. However, power training interventions have not been optimized for older adults. The aim of this study was to assess the feasibility and preliminary effectiveness of a power training program called Powerful Ageing in older adults. A total of 28 older adults participated in a 12-week power training intervention at an intensity of 20-30% 1RM. The primary outcome, feasibility, was assessed through intervention retention, adherence (attendance and compliance), and safety. Secondary outcomes were measured in health domains of the ICF. In the function domain, muscle power and anaerobic power were assessed using a weighted squat and Wingate test, respectively. In the activities domain, physical performance was measured using the 6-minute walk test, and in the participation domain, physical activity in daily life and health status were evaluated using an accelerometer and the SF-36 questionnaire, respectively.
MULTIFILE
Among runners, there is a high drop-out rate due to injuries and loss of motivation. These runners often lack personalized guidance and support. While there is much potential for sports apps to act as (e-)coaches to help these runners to avoid injuries, set goals, and maintain good intentions, most available running apps primarily focus on persuasive design features like monitoring, they offer few or no features that support personalized guidance (e.g., personalized training schemes). Therefore, we give a detailed description of the working mechanism of Inspirun e-Coach app and on how this app uses a personalized coaching approach with automatic adaptation of training schemes based on biofeedback and GPS-data. We also share insights into how end-users experience this working mechanism. The primary conclusion of this study is that the working mechanism (if provided with accurate data) automatically adapts training sessions to the runners’ physical workload and stimulates runners’ goal perception, motivation, and experienced personalization. With this mechanism, we attempted to make optimal use of the potential of wearable technology to support the large group of novice or less experienced runners and that by providing insight in our working mechanisms, it can be applied in other technologies, wearables, and types of sports.
DOCUMENT
PURPOSE: Athletes require feedback in order to comply with prescribed training programs designed to optimize their performance. In rowing, current feedback parameters on intensity are inaccurate. Mechanical power output is a suitable objective measure for training intensity, but due to movement restrictions related to crew rowing, it is uncertain whether crew rowers are able to adjust their intensity based on power-output feedback. The authors examined whether rowers improve compliance with prescribed power-output targets when visual real-time feedback on power output is provided in addition to commonly used feedback.METHODS: A total of 16 crew rowers rowed in 3 training sessions. During the first 2 sessions, they received commonly used feedback, followed by a session with additional power-output feedback. Targets were set by their coaches before the experiment. Compliance was operationalized as accuracy (absolute difference between target and delivered power output) and consistency (high- and low-frequency variations in delivered power output).RESULTS: Multilevel analyses indicated that accuracy and low-frequency variations improved by, respectively, 65% (P > .001) and 32% (P = .024) when additional feedback was provided.CONCLUSION: Compliance with power-output targets improved when crew rowers received additional feedback on power output. Two additional observations were made during the study that highlighted the relevance of power-output feedback for practice: There was a marked discrepancy between the prescribed targets and the actually delivered power output by the rowers, and coaches had difficulties perceiving improvements in rowers' compliance with power-output targets.
DOCUMENT
Athlete impairment level is an important factor in wheelchair mobility performance (WMP) in sports. Classification systems, aimed to compensate impairment level effects on performance, vary between sports. Improved understanding of resemblances and differences in WMP between sports could aid in optimizing the classification methodology. Furthermore, increased performance insight could be applied in training and wheelchair optimization. The wearable sensor-based wheelchair mobility performance monitor (WMPM) was used to measure WMP of wheelchair basketball, rugby and tennis athletes of (inter-)national level during match-play. As hypothesized, wheelchair basketball athletes show the highest average WMP levels and wheelchair rugby the lowest, whereas wheelchair tennis athletes range in between for most outcomes. Based on WMP profiles, wheelchair basketball requires the highest performance intensity, whereas in wheelchair tennis, maneuverability is the key performance factor. In wheelchair rugby, WMP levels show the highest variation comparable to the high variation in athletes’ impairment levels. These insights could be used to direct classification and training guidelines, with more emphasis on intensity for wheelchair basketball, focus on maneuverability for wheelchair tennis and impairment-level based training programs for wheelchair rugby. Wearable technology use seems a prerequisite for further development of wheelchair sports, on the sports level (classification) and on individual level (training and wheelchair configuration).
DOCUMENT
This pilot study explores the possibility of cognitive training software Neurotracker (NT), to have potential beneficial effects for Traumatic Brain Injury patients with Sensory Processing Disorder. Five subjects with TBI and SPD trained for 5 weeks/21 sessions with Neurotracker. Pre-post training cognitive tests (WAIS TMTA, TMTB, LNS) and surveys were conducted to measure possible cognitive differences with no statistical significant results. However, significant improvement in Neurotracker scores were found. =2.73, SD = 0.55) and positive changes associated with attention attention span, divided attention, (multiple) object tracking and motion sickness. LinkedIn: https://www.linkedin.com/in/bernard-de-roosz-28b96b125/
DOCUMENT