A significant proportion of adolescents with chronic musculoskeletal pain (CMP) experience difficulties in physical functioning, mood and social functioning, contributing to diminished quality of life. Generalized joint hypermobility (GJH) is a risk factor for developing CMP with a striking 35-48% of patients with CMP reporting GJH. In case GJH occurs with one or more musculoskeletal manifestations such as chronic pain, trauma, disturbed proprioception and joint instability, it is referred to as generalized hypermobility spectrum disorder (G-HSD). Similar characteristics have been reported in children and adolescents with the hypermobile Ehlers-Danlos Syndrome (hEDS). In the management of CMP, a biopsychosocial approach is recommended as several studies have confirmed the impact of psychosocial factors in the development and maintenance of CMP. The fear-avoidance model (FAM) is a cognitive-behavioural framework that describes the role of pain-related fear as a determinant of CMP-related disability. Pubmed was used to identify existing relevant literature focussing on chronic musculoskeletal pain, generalized joint hypermobility, pain-related fear and disability. Relevant articles were cross-referenced to identify articles possibly missed during the primary screening. In this paper the current state of scientific evidence is presented for each individual component of the FAM in hypermobile adolescents with and without CMP. Based on this overview, the FAM is proposed explaining a possible underlying mechanism in the relations between GJH, pain-related fear and disability. It is assumed that GJH seems to make you more vulnerable for injury and experiencing more frequent musculoskeletal pain. But in addition, a vulnerability for heightened pain-related fear is proposed as an underlying mechanism explaining the relationship between GJH and disability. Further scientific confirmation of this applied FAM is warranted to further unravel the underlying mechanism. In explaining disability in individuals with G-HSD/hEDS, it is important to focus on both the physical components related to joint hypermobility, in tandem with the psychological components such as pain-related fear, catastrophizing thoughts and generalized anxiety.
Background: Sexual deviance is regarded as an important risk factor for sexual offending. However, little is known about the development of deviant sexual interests. The transfer of arousal between emotions, i.e., excitation transfer, could attribute sexual salience to stimuli that would otherwise not be sexual in nature. As such, excitation transfer could contribute to the very beginning of unusual or deviant sexual interests. The current protocol proposes a study to investigate to what extent excitation transfer occurs, i.e., to what extent genital and subjective sexual arousal to sexual stimuli is higher in an emotional state than in a neutral state. Following a prior pilot study, several adjustments were made to the study protocol, including a stronger emotional manipulation by using 360-degree film clips and the inclusion of a larger and more sexually diverse sample. Methods: We will recruit 50 adult male volunteers with diverse sexual interests. We will induce sexual arousal in four different emotional states (aggression/dominance, endearment, fear, disgust) and a neutral state. Sexual arousal will be measured genitally using penile plethysmography and subjectively via self-report. Using paired samples t-tests, sexual arousal in the emotional states will be compared with sexual arousal in the neutral state. Discussion: We aim to show that arousal in response to emotional stimuli that are initially nonsexual in nature, can enhance sexual arousal. These findings have potentially important implications for the development of unusual and/or deviant sexual interests and possibly for the treatment of such sexual deviant interests in people who have committed sexual offenses.
The objective of this study is to investigate the heart rate (HR) accuracy measured at the wrist with the photoplethysmography (PPG) technique with a Fitbit Charge 2 (Fitbit Inc) in wheelchair users with spinal cord injury, how the activity intensity affects the HR accuracy, and whether this HR accuracy is affected by lesion level.
MULTIFILE