This article delves into the acceptance of autonomous driving within society and its implications for the automotive insurance sector. The research encompasses two different studies conducted with meticulous analysis. The first study involves over 600 participants involved with the automotive industry who have not yet had the opportunity to experience autonomous driving technology. It primarily centers on the adaptation of insurance products to align with the imminent implementation of this technology. The second study is directed at individuals who have had the opportunity to test an autonomous driving platform first-hand. Specifically, it examines users’ experiences after conducting test drives on public roads using an autonomous research platform jointly developed by MAPFRE, Universidad Carlos III de Madrid, and Universidad Politécnica de Madrid. The study conducted demonstrates that the user acceptance of autonomous driving technology significantly increases after firsthand experience with a real autonomous car. This finding underscores the importance of bringing autonomous driving technology closer to end-users in order to improve societal perception. Furthermore, the results provide valuable insights for industry stakeholders seeking to navigate the market as autonomous driving technology slowly becomes an integral part of commercial vehicles. The findings reveal that a substantial majority (96% of the surveyed individuals) believe that autonomous vehicles will still require insurance. Additionally, 90% of respondents express the opinion that policies for autonomous vehicles should be as affordable or even cheaper than those for traditional vehicles. This suggests that people may not be fully aware of the significant costs associated with the systems enabling autonomous driving when considering their insurance needs, which puts the spotlight back on the importance of bringing this technology closer to the general public.
DOCUMENT
Autonomous driving in public roads requires precise localization within the range of few centimeters. Even the best localization systems based on GNSS cannot always reach this level of precision, especially in an urban environment, where the signal is disturbed by surrounding buildings and artifacts. Recent works have shown the advantage of using maps as a precise, robust, and reliable way of localization. Typical approaches use the set of current readings from the vehicle sensors to estimate its position on the map. The approach presented in this paper exploits a short-range visual lane marking detector and a dead reckoning system to construct a registry of the detected back lane markings corresponding to the last 240 m driven. This information is used to search in the map the most similar section, to determine the vehicle localization in the map reference. Additional filtering is used to obtain a more robust estimation for the localization. The accuracy obtained is sufficiently high to allow autonomous driving in a narrow road. The system uses a low-cost architecture of sensors and the algorithm is light enough to run on low-power embedded architecture.
DOCUMENT
Autonomous driving in public roads requires precise localization within the range of few centimeters. Even the best current precise localization system based on the Global Navigation Satellite System (GNSS) can not always reach this level of precision, especially in an urban environment, where the signal is disturbed by surrounding buildings and artifacts. Laser range finder and stereo vision have been successfully used for obstacle detection, mapping and localization to solve the autonomous driving problem. Unfortunately, Light Detection and Ranging (LIDARs) are very expensive sensors and stereo vision requires powerful dedicated hardware to process the cameras information. In this context, this article presents a low-cost architecture of sensors and data fusion algorithm capable of autonomous driving in narrow two-way roads. Our approach exploits a combination of a short-range visual lane marking detector and a dead reckoning system to build a long and precise perception of the lane markings in the vehicle’s backwards. This information is used to localize the vehicle in a map, that also contains the reference trajectory for autonomous driving. Experimental results show the successful application of the proposed system on a real autonomous driving situation.
DOCUMENT
DOCUMENT
The adoption of electric autonomous vehicles (EAVs) is set to revolutionize airport ground operations. Airports are increasingly developing new autonomous innovation strategies to meet sustainability goals and address future challenges, such as shifting labor markets, evolving working conditions, and the growing impact of digitalization [1]. The traditional business model, in which manufacturers sell vehicles to operators (ground handlers), may no longer be relevant. The increasing complexity and advancement of EAVs will drive up costs, making the ownership model less appealing and shifting the focus from product-oriented to service-oriented models. This paper aims to provide a conceptual framework for potential business models for the implementation of EAVs in airport airside operations.
DOCUMENT
Elke periode kent zijn eigen revolutie en elke revolutie brengt zijn eigen organisatorische model met zich mee. We bevinden ons nu in de 4e industri¨ele revolutie, waar het internet van dingen ons verbindt met autonome embedded systemen. Deze systemen zijn actief in de virtuele ’cyber’ wereld, alsook in de echte ’fysieke’ wereld om ons heen. Deze zogenoemde ’Cyber-Fysieke’ Systemen volgen daarmee een modern organisatorisch model, namelijk zelfmanagement, en zijn dan ook in staat zelf proactieve acties te ondernemen. Dit proefschrift belicht productiesystemen vanuit het Cyber-Fysieke perspectief. De productiesystemen zijn hier herconfigureerbaar, autonoom en zeer flexibel. Dit kan enkel worden bereikt door het ontwikkelen van nieuwe methodes en het toepassen van nieuwe technologie¨en die flexibiliteit verder bevorderen. Echter, effici¨entie is ook van belang, bijvoorbeeld door productassemblage zo flexibel te maken dat het daardoor kosteneffici¨ent is om de productie van diverse producten met een lage oplage, zogenaamde high-mix, low volume producten, te automatiseren. De mogelijkheid om zo flexibel te kunnen produceren moet bereikt worden door de creatie van nieuwe methoden en middelen, waarbij nieuwe technologie¨en worden gecombineerd; een belangrijk aspect hierbij is dat dit toepasbaar getest moet worden door gebruik van simulatoren en speciaal hiervoor ontwikkelde productiesystemen. Dit onderzoek zal beginnen met het introduceren van het concept achter de bijbehorende productiemethodologie, welke Grid Manufacturing is genoemd. Grid Manufacturing wordt uitgevoerd door autonome entiteiten (agenten) die zowel de productiesystemen zelf, als de producten representeren. Producten leven dan al in de virtuele cyber wereld voordat zij daadwerkelijk zijn gebouwd, en zijn zich bewust uit welke onderdelen zij gemaakt moeten worden. De producten communiceren en overleggen met de autonome herconfigureerbare productiesystemen, de zogenaamde equiplets. Deze equiplets leveren generieke diensten aan een grote diversiteit aan producten, die hierdoor op elk moment geproduceerd kunnen worden. Het onderzoek focust hierbij specifiek op de equiplets en de technische uitdagingen om dynamisch geautomatiseerde productie mogelijk te maken. Om Grid Manufacturing mogelijk te maken is er een set van technologische uitdagingen onderzocht. De achtergrond, onderzoeksaanpak en concepten zijn dan ook de eerste drie inleidende hoofdstukken. Daarna begint het onderzoek met Hoofdstuk 4 Object Awareness. Dit hoofdstuk beschrijft een dynamische manier waarop informatie uit verschillende autonome systemen gecombineerd wordt om objecten te herkennen, lokaliseren en daarmee te kunnen manipuleren. Hoofdstuk 5 Herconfiguratie beschrijft hoe producten communiceren met de equiplets en welke achterliggende systemen ervoor zorgen dat, ondanks | Dutch Summary 232 dat het product niet bekend is met de hardware van de equiplet, deze toch in staat is acties uit te voeren. Tevens beschrijft het hoofdstuk hoe de equiplets omgaan met verschillende hardwareconfiguraties en ondanks de aanpassingen zichzelf toch kunnen besturen. De equiplet kan dan ook aangepast worden zonder dat deze opnieuw geprogrammeerd hoeft te worden. In Hoofdstuk 6 Architectuur wordt vervolgens dieper ingegaan op de bovenliggende architectuur van de equiplets. Hier worden prestaties gecombineerd met flexibiliteit, waarvoor een hybride architectuur is ontwikkeld die het grid van equiplets controleert door het gebruik van twee platformen: Multi-Agent System (MAS) en Robot Operating System (ROS). Nadat de architectuur is vastgesteld, wordt er in Hoofdstuk 7 onderzocht hoe deze veilig ingezet kan worden. Hierbij wordt een controlesysteem ingevoerd dat het systeemgedrag bepaalt, waarmee het gedrag van de equiplets transparant wordt gemaakt. Tevens zal een simulatie met input van de sensoren uit de fysieke wereld ’live’ controleren of alle bewegingen veilig uitgevoerd kunnen worden. Nadat de basisfunctionaliteit van het Grid nu compleet is, wordt in Hoofdstuk 8 Validatie en Utilisatie gekeken naar hoe Grid Manufacturing gebruikt kan worden en welke nieuwe mogelijkheden deze kan opleveren. Zo wordt er besproken hoe zowel een hi¨erarchische als een heterarchische aanpak, waar alle systemen gelijk zijn, gebruikt kan worden. Daarnaast laat het hoofdstuk o.a. aan de hand van enkele voorbeelden en simulaties zien welke effecten herconfiguratie kan hebben, en welke voordelen deze aanpak zoal kan bieden.. Het proefschrift laat zien hoe met technische middelen geautomatiseerde flexibiliteit mogelijk wordt gemaakt. Hoewel het gehele concept nog volwassen zal moeten worden, worden er enkele aspecten getoond die op de korte termijn toepasbaar zijn in de industrie. Enkele voorbeelden hiervan zijn: (1) het combineren van gegevens uit diverse (autonome) bronnen voor 6D-lokalisatie; (2) een data-gedreven systeem, de zogeheten hardware-abstractielaag, die herconfigureerbare systemen controleert en de mogelijkheid biedt om deze productiesystemen aan te passen zonder deze te hoeven herprogrammeren; en (3) het gebruik van Cyber-Fysieke systemen om de veiligheid te verhogen.
MULTIFILE
When using autonomous reconfigurable manufacturing system, that offers generic services, there is the possibility to dynamically manufacture a range of products using the same manufacturing equipment. Opportunities are created to optimally scale the production using reconfiguration means and automatically manufacture small amounts of unique or highly customizable products. Basically the result is a short time to market for new products. This paper discusses the problems that arise when manufacturing systems are reconfigured and the impact of this action on the entire system. The proposed software architecture and tooling makes it possible to quickly reconfigure a system without interference to other system, and shows how the reconfigured hardware can be controlled without the need to reprogram the software. Parameters that are required to control the new hardware can be added using a simple tool. As a result reconfiguration is simplified and can be achieved quickly by mechanics without reprogramming any systems. The impact is that time to market can be reduced and manufacturing systems can quickly be adapted to current real-time needs.
DOCUMENT