Objective: Post-mortem computed tomography (PMCT) is an established method for disease, complications, and cause of death determination in both clinical and forensic cases. By adding intravascular infusion of contrast medium, computed tomography angiography (PMCTA) provides additional information on vascular structures and hemorrhages. When easily applicable and low in costs, this technique would be more frequently applied and of additional value to clinical and educational purposes, particularly in forensic scientific context. Materials and Methods: PMCTA was performed on 10 bodies of the anatomy department. First, a metal T-piece was inserted into the femoral artery as part of standard practice for conservation. Secondly, surplus contrast medium with sodium chloride was infused into the body through a catheter tube set attached to the metal T-piece, using a readily available enteroclysis pump from our radiology department. Results: With added costs of approximately € 266 (personnel and materials) and an additional procedure time of 15-20 minutes, successful infusion of contrast mixture was achieved with the enteroclysis pump. Partial or complete opacification was measured in 89% of arteries, with enhancement of soft tissue visualization. Conclusion: This study successfully evaluated an inexpensive and easy to use method to perform PMCTA for post-mortem investigations.
Endothelial cells were isolated from arteries and veins obtained from elderly people at autopsy and propagated for 37 to 69 population doublings. The cells secreted tissue-type plasminogen activator (t-PA) and PA inhibitor-1, and, after subculturing, urokinase-type PA (u-PA) antigen. The following differences between endothelial cells from adult arteries and veins were observed: 1) The cells had the potential to be propagated as a healthy monolayer. The diameter of aortic endothelial cells increased after 8 to 19 population doublings, while a homogeneous population of small diameter vena cava cells was retained for 35 population doublings. 2) The amount of secreted t-PA varied. Vena cava cells produced four times more t-PA than aorta cells, and 20-fold more than umbilical artery or vein endothelial cells. The t-PA mRNA content of vena cava cells did not exceed that of aorta cells, but was fourfold greater than that of umbilical cord endothelial cells. 3) The release of u-PA antigen varied. No u-PA antigen was detectable in conditioned medium of primary cultures of human aorta and vena cava endothelial cells or of early passage vena cava cells. After prolonged subculturing, vena cava cells started to secrete u-PA. Endothelial cells from aorta and other adult arteries, however, started secreting u-PA after one to four passages, parallel to the occurrence of enlarged endothelial cells. u-PA was present as a u-PA/inhibitor complex and as a single-chain u-PA. These differences may be developmentally related to their artery or vein origin or may reflect differences acquired during the "life history" of these blood vessels in vivo. Our data suggest that the release of u-PA antigen by human macrovascular endothelial cells can be used as an indicator of cell senescence.
BACKGROUND: Estimates for dead space ventilation have been shown to be independently associated with an increased risk of mortality in the acute respiratory distress syndrome and small case series of COVID-19-related ARDS.METHODS: Secondary analysis from the PRoVENT-COVID study. The PRoVENT-COVID is a national, multicenter, retrospective observational study done at 22 intensive care units in the Netherlands. Consecutive patients aged at least 18 years were eligible for participation if they had received invasive ventilation for COVID-19 at a participating ICU during the first month of the national outbreak in the Netherlands. The aim was to quantify the dynamics and determine the prognostic value of surrogate markers of wasted ventilation in patients with COVID-19-related ARDS.RESULTS: A total of 927 consecutive patients admitted with COVID-19-related ARDS were included in this study. Estimations of wasted ventilation such as the estimated dead space fraction (by Harris-Benedict and direct method) and ventilatory ratio were significantly higher in non-survivors than survivors at baseline and during the following days of mechanical ventilation (p < 0.001). The end-tidal-to-arterial PCO2 ratio was lower in non-survivors than in survivors (p < 0.001). As ARDS severity increased, mortality increased with successive tertiles of dead space fraction by Harris-Benedict and by direct estimation, and with an increase in the VR. The same trend was observed with decreased levels in the tertiles for the end-tidal-to-arterial PCO2 ratio. After adjustment for a base risk model that included chronic comorbidities and ventilation- and oxygenation-parameters, none of the dead space estimates measured at the start of ventilation or the following days were significantly associated with 28-day mortality.CONCLUSIONS: There is significant impairment of ventilation in the early course of COVID-19-related ARDS but quantification of this impairment does not add prognostic information when added to a baseline risk model.TRIAL REGISTRATION: ISRCTN04346342. Registered 15 April 2020. Retrospectively registered.
MULTIFILE