Intreerede bijzonder lector Shima Mousavi Gargari op 14 november 2024
The rise of financial technology (fintech) driven business models in banking poses a challenge for financial regulators. While the positive effects on the banking sector in terms of greater diversity and competition are generally recognized and encouraged by regulators, the nature of fintech business models may increase the risk of financial instability. Regulators are exploring ways to resolve this dilemma. The paper in hand makes a contribution to the literature by providing a framework for resolving the dilemma that is evaluated in the context of the regulatory response to the rise of fintech credit in the Netherlands. The semi-structured interviews which we conducted with four senior Dutch regulators resulted in three areas that–from their perspective–required urgent action: fintech credit companies need to lower the risk of overlending, increase pricing transparency, and improve lending standards. These findings were confirmed by the results of they survey among fintech credit clients. The current regulatory response to the rise of fintech in banking in the Netherlands provides an interesting case study that delineates the features of the future regulation of fintech in banking.
Author supplied from the article: Abstract A temperature compensated hydrogen sensor was designed and made capable of detecting H2 within a broad range of 100–10.000 ppm while compensating instantaneously for large (±25 °C) temperature variations. Two related operational constraints have been simultaneously addressed: (1) Selective, and sensitive detection under large temperature changes, (2) Fast warning at low and increasing H2 levels. Accurate measurements of hydrogen concentrations were enabled by matching relevant time-constants. This was achieved with a microchip having two temperature coupled palladium nanowires. One of the H2 sensitive Pd nanowires was directly exposed to hydrogen, whilst the other nanowire was used as a temperature sensor and as a reference. A drop forging technique was used to passivate the second Pd wire against H2 sensing. Temperature effects could be substantially reduced with a digital signal processing algorithm. Measurements were done in a test chamber, enabling the hydrogen concentration to be controlled over short and long periods. An early response for H2 sensing is attainable in the order of 600 milliseconds and an accurate value for the absolute hydrogen concentration can be obtained within 15 s.
LINK
CRISPR/Cas genome engineering unleashed a scientific revolution, but entails socio-ethical dilemmas as genetic changes might affect evolution and objections exist against genetically modified organisms. CRISPR-mediated epigenetic editing offers an alternative to reprogram gene functioning long-term, without changing the genetic sequence. Although preclinical studies indicate effective gene expression modulation, long-term effects are unpredictable. This limited understanding of epigenetics and transcription dynamics hampers straightforward applications and prevents full exploitation of epigenetic editing in biotechnological and health/medical applications.Epi-Guide-Edit will analyse existing and newly-generated screening data to predict long-term responsiveness to epigenetic editing (cancer cells, plant protoplasts). Robust rules to achieve long-term epigenetic reprogramming will be distilled based on i) responsiveness to various epigenetic effector domains targeting selected genes, ii) (epi)genetic/chromatin composition before/after editing, and iii) transcription dynamics. Sustained reprogramming will be examined in complex systems (2/3D fibroblast/immune/cancer co-cultures; tomato plants), providing insights for improving tumor/immune responses, skin care or crop breeding. The iterative optimisations of Epi-Guide-Edit rules to non-genetically reprogram eventually any gene of interest will enable exploitation of gene regulation in diverse biological models addressing major societal challenges.The optimally balanced consortium of (applied) universities, ethical and industrial experts facilitates timely socioeconomic impact. Specifically, the developed knowledge/tools will be shared with a wide-spectrum of students/teachers ensuring training of next-generation professionals. Epi-Guide-Edit will thus result in widely applicable effective epigenetic editing tools, whilst training next-generation scientists, and guiding public acceptance.
In the last decade, the concept on interactions between humans, animals and their environment has drastically changed, endorsed by the One Health approach that recognizes that health of humans and animals are inextricably linked. Consideration of welfare of livestock has increased accordingly and with it, attention into the possibilities to improve livestock health via natural, more balanced nutrition is expanding. Central to effects of healthy nutrition is an optimal gastrointestinal condition which entails a well-balanced functional local immune system leading to a resilient state of well-being. This project proposal, GITools, aims to establish a toolbox of in vitro assays to screen new feed ingredients for beneficial effects on gastrointestinal health and animal well-being. GITools will focus on pig and chicken as important livestock species present in high quantities and living in close proximity to humans. GITools builds on intestinal models (intestinal cell lines and stem cell-derived organoids), biomarker analysis, and in vitro enzymatic and microbial digestion models of feed constituents. The concept of GITools originated from various individual contacts and projects with industry partners that produce animal feed (additives) or veterinary medicines. Within these companies, an urgent need exists for straightforward, well-characterized and standardized in vitro methods that provide results translatable to the in vivo situation. This to replace testing of new feed concepts in live animal. We will examine in vitro methods for their applicability with feed ingredients selected based on the availability of data from (previous) in vivo studies. These model compounds will include long and short chain fatty acids, oligosaccharides and herbal-derived components. GITools will deliver insights on the role of intestinal processes (e.g. dietary hormone production, growth of epithelial cells, barrier function and innate immune responses) in health and well-being of livestock animals and improve the efficiency of testing new feed products.