BackgroundThe closing of schools and sports clubs during the COVID-19 lockdown raised questions about the possible impact on children’s motor skill development. Therefore, we compared motor skill development over a one-year period among four different cohorts of primary school children of which two experienced no lockdowns during the study period (control cohorts) and two cohorts experienced one or two lockdowns during the study period (lockdown cohorts).MethodsA total of 992 children from 9 primary schools in Amsterdam (the Netherlands) participated in this study (age 5 – 7; 47.5% boys, 52.5% girls). Their motor skill competence was assessed twice, first in grade 3 (T1) and thereafter in grade 4 (T2). Children in control group 1 and lockdown group 1 were assessed a third time after two years (T3). Motor skill competence was assessed using the 4-Skills Test, which includes 4 components of motor skill: jumping force (locomotion), jumping coordination (coordination), bouncing ball (object control) and standing still (stability). Mixed factorial ANOVA’s were used to analyse our data.ResultsNo significant differences in motor skill development over the study period between the lockdown groups and control groups (p > 0.05) were found, but a difference was found between the two lockdown groups: lockdown group 2 developed significantly better than lockdown group 1 (p = 0.008). While socioeconomic status was an effect modifier, sex and motor ability did not modify the effects of the lockdowns.ConclusionsThe COVID-19 lockdowns in the Netherlands did not negatively affect motor skill development of young children in our study. Due to the complexity of the factors related to the pandemic lockdowns and the dynamic systems involved in motor skill development of children, caution must be taken with drawing general conclusions. Therefore, children’s motor skill development should be closely monitored in the upcoming years and attention should be paid to individual differences.
MULTIFILE
The main aim of this study was to determine the agreement in classification between the modified KörperKoordinations Test für Kinder (KTK3+) and the Athletic Skills Track (AST) for measuring fundamental movement skill levels (FMS) in 6- to 12-year old children. 3,107 Dutch children (of which 1,625 are girls) between 6 and 12 years of age (9.1 ± 1.8 years) were tested with the KTK3+ and the AST. The KTK3+ consists of three items from the KTK and the Faber hand-eye coordination test. Raw scores from each subtest were transformed into percentile scores based on all the data of each grade. The AST is an obstacle course consisting of 5 (grades 3 till 5, 6–9 years) or 7 (grades 6 till 8, 9–12 years) concatenated FMS that should be performed as quickly as possible. The outcome measure is the time needed to complete the track. A significant bivariate Pearson correlation coefficient of 0.51 was found between the percentile sum score of the KTK3+ and the time to complete the AST, indicating that both tests measure a similar construct to some extent. Based on their scores, children were classified into one of five categories: <5, 5–15, 16–85, 86–95 or >95%. Cross tabs revealed an agreement of 58.8% with a Kappa value of 0.15 between both tests. Less than 1% of the children were classified more than two categories higher or lower. The moderate correlation between the KTK3+ and the AST and the low classification agreement into five categories of FMS stress the importance to further investigate the test choice and the measurement properties (i.e., validity and reliability) of both tools. PE teachers needs to be aware of the context in which the test will be conducted, know which construct of motor competence they want to measure and know what the purpose of testing is (e.g., screening or monitoring). Based on these considerations, the most appropriate assessment tool can be chosen.
MULTIFILE
Introduction: Nursing education traditionally teaches skill acquisition in isolated practice drills and guided by step-by-step protocols. While these approaches may seem to provide a solid foundation, they do not adequately bridge the gap between a controlled learning environment and the reality of nursing practice. The constraints-led approach (CLA) is an applied theory, which explains that skill acquisition is a process of adjusting to the characteristics of a situation, instead of reproducing isolated, “ideal” movements out of context. Given that CLA has gained recognition as an effective learning method in various fields, it is worth investigating how CLA can be implemented for skill acquisition in nursing education. Methods: To gain insight into student experiences of several CLA-exercises, an explorative qualitative design was used. Ten longitudinal focus groups with nursing students (n = 11) were performed to gain deeper understanding of students’ experiences with an education course in which several “CLA-exercises” were integrated. In addition, the teachers (n = 3) involved were interviewed after the course was completed. Results: The students experienced the education course as enjoyable, challenging and reality-based. Also, the exercises motivated students to keep practicing. The students further appreciated the room for autonomy and self-organization. The teachers expressed enthusiasm for CLA-inspired education, noting the benefits of varied methods and the need for expert feedback and well-working practice materials. Conclusion: Both students and teachers felt confident that the students who completed this course were ready to apply the learned skills under supervision in clinical practice.
Promoting entrepreneurship is an enabler of smart, sustainable and inclusive growth and it is one objective EU regions have pursued since the EC included it into 2020 Strategy. Entrepreneurship development has economic and social benefits, since it is not only a driving force for job creation, competitiveness and growth; it also contributes to personal fulfillment and to achieve social objectives. That is why the EU encourages entrepreneurial initiatives and to unlock the growth potential of businesses and citizens. However, only a 37% of Europeans (Eurobarometer 2012) would like to be self-employed. The Entrepreneurship Action Plan adopted by the EC in 2013 to reignite Europe’s entrepreneurial spirit includes initiatives for educating young people on entrepreneurship. To ensure that EU economy remains globally competitive, young generations of Europeans need to be inspired to develop their entrepreneurial mindset. EU 2020 Action Plan argues that young people benefitting of a specialised entrepreneurial education are more likely to start-up a business and to better tackle challenges in their professional career and life in general. Hence, there is good reason to ensure better quality of entrepreneurial education. Most approaches in recent years have focused on improving the skills or competences youngsters should obtain only within the education system. However, an integrated approach is needed, where the school, their friends, family and the social environment, shall play each one a relevant role, contributing to generate a more adequate atmosphere to boost their entrepreneurial mindsets, intrapreneurial attitudes and innovation capacities. This project will identify and exchange – through a quadruple helix approach- good practices for creating friendlier entrepreneurial ecosystems and actions to boost entrepreneurship in young people mindsets. The good practices and lessons learnt will be transferred into Action Plans to be included in regional policies.
The Dutch floriculture is globally leading, and its products, knowledge and skills are important export products. New challenges in the European research agenda include sustainable use of raw materials such as fertilizer, water and energy, and limiting the use of pesticides. Greenhouse growers however have little control over crop growth conditions in the greenhouse at individual plant level. The purpose of this project, ‘HiPerGreen’, is to provide greenhouse owners with new methods to monitor the crop growth conditions in their greenhouse at plant level, compare the measured growth conditions and the measured growth with expected conditions and expected growth, to point out areas with deviations, recommend counter-measures and ultimately to increase their crop yield. The main research question is: How can we gather, process and present greenhouse crop growth parameters over large scale greenhouses in an economical way and ultimately improve crop yield? To provide an answer to this question, a team of university researchers and companies will cooperate in this applied research project to cover several different fields of expertise The application target is floriculture: the production of ornamental pot plants and cut flowers. Participating companies are engaged in the cultivation of pot plans, flowers and suppliers of greenhouse technology. Most of the parties fall in the SME (MKB) category, in line with the RAAK MKB objectives.Finally, the Demokwekerij and Hortipoint (the publisher of the international newsletter on floriculture) are closely involved. The project will develop new knowledge for a smart and rugged data infrastructure for growth monitoring and growth modeling in the greenhouse. In total the project will involve approximately 12 (teacher) researchers from the universities and about 60 students, who will work in the form of internships and undergraduate studies of interesting questions directly from the participating companies.
INEDIT creates an open innovation European DIT ecosystem for sustainable furniture co-creation. It channels the creativity of consumers, shapes it through designers' professional skills, and makes it viable by leveraging on the expertise of production specialists in order to deliver sustainable, smart and personalized new products in a shorter time to market. INEDIT intends to demonstrate the capacity to turn the well-known 'Do It Yourself' (DIY) approach applied by individuals within FabLabs into a professional approach named 'Do It Together' (DIT).The DIT approach will be applied by customers and professional producers, especially SMEs, for conveying higher customer satisfaction through customer-driven production. DIT is a novel approach capitalizing on the knowledge, creativity and ideas of design and engineering conceptualized by interdisciplinary stakeholders and sometimes even new actors. It is powered by existing European innovation ecosystems shaping new products across EU countries.INEDIT demonstrates the approach through four cross use cases with high societal impact: sustainable wood panels manufacturing and 3D-printing of wood, 3D printing of recycled plastic and 'smartification'.Sustainability and consideration of individual preferences, especially of women and men, will be our guiding thread. INEDIT addresses societal challenges such as contribution to reduce the amount of produced CO2 in focusing on European-wide production, creation and maintenance of EU-wide job opportunities. This will lead to new business opportunities supported by business model innovation.Moreover, these innovative networked local manufacturing competences and production facilities across the EU will solve ethical concerns within the manufacturing network. INEDIT intends to demonstrate, through its twin - digital and physical - platform, the potential innovation around social manufacturing within the circular economy in designing globally while producing locally.