Purpose Adding external focus of attention (EF, focus on the movement effect) may optimize current anterior cruciate ligament (ACL) injury prevention programmes. The purpose of the current study was to investigate the effects of an EF, by a visual stimulus and an internal focus, by a verbal stimulus during unexpected sidestep cutting in female and male athletes and how these effects remained over time. Methods Ninety experienced basketball athletes performed sidestep cutting manoeuvres in three sessions (S1, S2 and S3). In this randomized controlled trial, athletes were allocated to three groups: visual (VIS), verbal (VER) and control (CTRL). Kinematics and kinetics were collected at the time of peak knee frontal plane moment. Results Males in the VIS group showed a larger ver- tical ground reaction force (S1: 25.4 ± 3.1 N/kg, S2: 25.8 ± 2.9 N/kg, S3: 25.2 ± 3.2 N/kg) and knee flexion moments (S1: −3.8 ± 0.9 Nm/kg, S2: −4.0 ± 1.2 Nm/ kg, S3: −3.9 ± 1.3 Nm/kg) compared to the males in the VER and CTRL groups and to the females in the VIS group (p < 0.05). Additionally, the males in the VIS group reduced knee valgus moment and the females in the VER group reduced knee varus moment over time (n.s.). Conclusion Male subjects clearly benefit from visual feedback. Females may need different feedback modes to learn a correct movement pattern. Sex-specific learning preferences may have to be acknowledged in day by day practice. Adding video instruction or feedback to regular training regimens when teaching athletes safe movement patterns and providing individual feedback might target suboptimal long-term results and optimize ACL injury prevention programmes. Level of evidence I.
OBJECTIVE: The purpose of this study was to determine the effects of seat height, wheelchair mass and grip on mobility performance among wheelchair basketball players and to investigate whether these effects differ between classification levels. METHODS: Elite wheelchair basketball players with a low (n= 11, class 1 or 1.5) or high (n= 10, class 4 or 4.5) classification performed a field-based wheelchair mobility performance (WMP) test. Athletes performed the test six times in their own wheelchair, of which five times with different configurations, a higher or lower seat height, with additional distally or centrally located extra mass, and with gloves. The effects of these configurations on performance times and the interaction with classification were determined. RESULTS: Total performance time on the WMP test was significantly reduced when using a 7.5% lower seat height. Additional mass (7.5%) and glove use did not lead to changes in performance time. Effects were the same for the two classification levels. CONCLUSIONS: The methodology can be used in a wheelchair fitting process to search for the optimal individual configuration to enhance mobility performance. Out of all adjustments possible, this study focused on seat height, mass and grip only. Further research can focus on these possible adjustments to optimize mobility performance in wheelchair basketball. DOI: 10.3233/TAD-190251 LinkedIn: https://www.linkedin.com/in/annemarie-de-witte-9582b154/ https://www.linkedin.com/in/rienkvdslikke/ https://www.linkedin.com/in/moniqueberger/
MULTIFILE
In this study we measured the performance times on the Wheelchair Mobility Performance (WMP) test during different test conditions to see if the performance times changed when wheelchair settings were changed. The overall performance time on the WMP test increased when the tire pressure was reduced and also when extra mass was attached to the wheelchair. It can be concluded that the WMP test is sensitive to changes in wheelchair settings. It is recommended to use this field-based test in further research to investigate the effect of wheelchair settings on mobility performance time. Objective: The Wheelchair Mobility Performance (WMP) test is a reliable and valid measure to assess mobility performance in wheelchair basketball. The aim of this study was to examine the sensitivity to change of the WMP test by manipulating wheelchair configurations. Methods: Sixteen wheelchair basketball players performed the WMP test 3 times in their own wheelchair: (i) without adjustments (“control condition”); (ii) with 10 kg additional mass (“weighted condition”); and (iii) with 50% reduced tyre pressure (“tyre condition”). The outcome measure was time (s). If paired t-tests were significant (p < 0.05) and differences between conditions were larger than the standard error of measurement, the effect sizes (ES) were used to evaluate the sensitivity to change. ES values ≥0.2 were regarded as sensitive to change. Results: The overall performance times for the manipulations were significantly higher than the control condition, with mean differences of 4.40 s (weight – control, ES = 0.44) and 2.81 s (tyre – control, ES = 0.27). The overall performance time on the WMP test was judged as sensitive to change. For 8 of the 15 separate tasks on the WMP test, the tasks were judged as sensitive to change for at least one of the manipulations. Conclusion: The WMP test can detect change in mobility performance when wheelchair configurations are manipulated. https://www.medicaljournals.se/jrm/content/html/10.2340/16501977-2341
MULTIFILE