To improve people’s lives, human-computer interaction researchers are increasingly designing technological solutions based on behavior change theory, such as social comparison theory (SCT). However, how researchers operationalize such a theory as a design remains largely unclear. One way to clarify this methodological step is to clearly state which functional elements of a design are aimed at operationalizing a specific behavior change theory construct to evaluate if such aims were successful. In this article, we investigate how the operationalization of functional elements of theories and designs can be more easily conveyed. First, we present a scoping review of the literature to determine the state of operationalizations of SCT as behavior change designs. Second, we introduce a new tool to facilitate the operationalization process. We term the tool blueprints. A blueprint explicates essential functional elements of a behavior change theory by describing it in relation to necessary and sufficient building blocks incorporated in a design. We describe the process of developing a blueprint for SCT. Last, we illustrate how the blueprint can be used during the design refinement and reflection process.
DOCUMENT
Behaviour Change Support Systems (BCSS), already running for the 10th time at Persuasive Technology, is a workshop that builds around the concept of systems that are specifically designed to help and support behaviour change in individuals or groups. The highly multi-disciplinary nature of designing and implementing behaviour change strategies and systems for the strategies has been in the forefront of this workshop from the very beginning. The persuasive technology field is becoming a linking pin connecting natural and social sciences, requiring a holistic view on persuasive technologies, as well as multi-disciplinary approach for design, implementation, and evaluation. So far, the capacities of technologies to change behaviours and to continuously monitor the progress and effects of interventions are not being used to its full potential. The use of technologies as persuaders may shed a new light on the interaction process of persuasion, influencing attitudes and behaviours. Yet, although human- computer interaction is social in nature and people often do see computers as social actors, it is still unknown how these interactions re-shape attitude, beliefs, and emotions, or how they change behaviour, and what the drawbacks are for persuasion via technologies. Humans re-shape technology, changing their goals during usage. This means that persuasion is not a static ad hoc event but an ongoing process. Technology has the capacity to create smart (virtual) persuasive environments that provide simultaneously multimodal cues and psycho-physiological feedback for personal change by strengthening emotional, social, and physical presence. An array of persuasive applications has been developed over the past decade with an aim to induce desirable behaviour change. Persuasive applications have shown promising results in motivating and supporting people to change or adopt new behaviours and attitudes in various domains such as health and wellbeing, sustainable energy, education, and marketing. This workshop aims at connecting multidisciplinary researchers, practitioners and experts from a variety of scientific domains, such as information sciences, human-computer interaction, industrial design, psychology and medicine. This interactive workshop will act as a forum where experts from multiple disciplines can present their work, and can discuss and debate the pillars for persuasive technology.
MULTIFILE
BackgroundPhysical activity can prevent or delay age-related impairments and prolong the ability of older adults to live independently. Community-based programs typically offer classes where older adults can exercise only once a week under the guidance of an instructor. The health benefits of such programs vary. Exercise frequency and the duration of the program play a key role in realizing effectiveness. An auxiliary home-based exercise program can provide older adults the opportunity to exercise more regularly over a prolonged period of time in the convenience of their own homes. Furthermore, mobile electronic devices can be used to motivate and remotely guide older adults to exercise in a safe manner. Such a blended intervention, where technology is combined with personal guidance, needs to incorporate behavior change principles to ensure effectiveness.ObjectiveThe aim of this study was to identify theory-based components of a blended intervention that supports older adults to exercise at home.MethodsThe Medical Research Council framework was used to develop the blended intervention. Insights from focus group, expert panels, and literature were combined into leading design considerations.ResultsA client-server system had been developed that combined a tablet app with a database in the cloud and a Web-based dashboard that can be used by a personal coach to remotely monitor and guide older adults. The app contains several components that facilitate behavior change—an interactive module for goal setting, the ability to draw up a personal training schedule from a library containing over 50 exercise videos, progress monitoring, and possibilities to receive remote feedback and guidance of a personal coach.ConclusionsAn evidence-based blended intervention was designed to promote physical activity among older adults. The underlying design choices were underpinned by behavior change techniques that are rooted in self-regulation. Key components of the tablet-supported intervention were a tailored program that accommodates individual needs, demonstrations of functional exercises, monitoring, and remote feedback. The blended approach combines the convenience of a home-based exercise program for older adults with the strengths of mobile health and personal guidance.
DOCUMENT
Currently, many novel innovative materials and manufacturing methods are developed in order to help businesses for improving their performance, developing new products, and also implement more sustainability into their current processes. For this purpose, additive manufacturing (AM) technology has been very successful in the fabrication of complex shape products, that cannot be manufactured by conventional approaches, and also using novel high-performance materials with more sustainable aspects. The application of bioplastics and biopolymers is growing fast in the 3D printing industry. Since they are good alternatives to petrochemical products that have negative impacts on environments, therefore, many research studies have been exploring and developing new biopolymers and 3D printing techniques for the fabrication of fully biobased products. In particular, 3D printing of smart biopolymers has attracted much attention due to the specific functionalities of the fabricated products. They have a unique ability to recover their original shape from a significant plastic deformation when a particular stimulus, like temperature, is applied. Therefore, the application of smart biopolymers in the 3D printing process gives an additional dimension (time) to this technology, called four-dimensional (4D) printing, and it highlights the promise for further development of 4D printing in the design and fabrication of smart structures and products. This performance in combination with specific complex designs, such as sandwich structures, allows the production of for example impact-resistant, stress-absorber panels, lightweight products for sporting goods, automotive, or many other applications. In this study, an experimental approach will be applied to fabricate a suitable biopolymer with a shape memory behavior and also investigate the impact of design and operational parameters on the functionality of 4D printed sandwich structures, especially, stress absorption rate and shape recovery behavior.
Design, Design Thinking, and Co-design have gained global recognition as powerful approaches for innovation and transformation. These methodologies foster stakeholder engagement, empathy, and collective sense-making, and are increasingly applied to tackle complex societal and institutional challenges. However, despite their collaborative potential, many initiatives encounter resistance, participation fatigue, or only result in superficial change. A key reason lies in the overlooked undercurrent—the hidden systemic dynamics that shape transitions. This one-year exploratory research project, initiated by the Expertise Network Systemic Co-design (ESC), aims to make systemic work accessible to creative professionals and companies working in social and transition design. It focuses on the development of a Toolkit for Systemic Work, enabling professionals to recognize underlying patterns, power structures, and behavioral dynamics that can block or accelerate innovation. The research builds on the shared learning agenda of the ESC network, which brings together universities of applied sciences, design practitioners, and organizations such as the Design Thinkers Group, Mindpact, and Vonken van Vernieuwing. By integrating systemic insights—drawing from fields like systemic therapy, constellation work, and behavioral sciences—into co-design practices, the project strengthens the capacity to not only design solutions but also navigate the forces that shape sustainable change. The central research question is: How can we make systemic work accessible to creative professionals, to support its application in social and transition design? Through the development and testing of practical tools and methods, this project bridges the gap between academic insights and the concrete needs of practitioners. It contributes to the professionalization of design for social innovation by embedding systemic awareness and collective learning into design processes, offering a foundation for deeper impact in societal transitions.
Our world is changing rapidly as a result of societal and technological developments that create new opportunities and challenges. Extended Realities (XR) could provide solutions for the problems the world is facing. In this project we apply these novel solutions in food and hospitality. It aims to tackle fundamental questions on how to stimulate a healthy and vital society that is based on a sustainable and innovative economy. This project aims to answer the question: How can Extended Reality (XR) technologies be integrated in the design of immersive food experiences to stimulate sustainable consumption behavior? A multidisciplinary approach, that has demonstrated its strength in the creative industry, will be applied in the hospitality and food sector. The project investigates implications and design considerations for immersion through XR technology that can stimulate sustainable consumption behavior. Based on XR prototypes, physiological data will be collected using biometric measuring devices in combination with self-reports. The effect of stimuli on sustainable consumption behavior during the immersive experience will be tested to introduce XR implementations that can motivate long-term behavioral change in food consumption. The results of the project contribute towards developing innovations in the hospitality sector that can tackle global societal challenges by exploiting the impact of new technology and understanding of consumer behavior to promote a healthy lifestyle and economy. Next to academic publications and conference contributions, the project will develop a handbook for hospitality professionals. It will outline steps and design criteria for the implementation of XR technologies to create immersive experiences that can stimulate sustainable consumption behavior. The knowledge generated in the project will contribute to the development of the curriculum at the Academy for Hotel and Facility at Breda University of Applied Sciences by introducing a technology-driven experience design approach for the course Sustainable Strategic Business Design.