The historically developed practice of learning to play a music instrument from notes instead of by imitation or improvisation makes it possible to contrast two types of skilled musicians characterized not only by dissimilar performance practices, but also disparate methods of audiomotor learning. In a recent fMRI study comparing these two groups of musicians while they either imagined playing along with a recording or covertly assessed the quality of the performance, we observed activation of a right-hemisphere network of posterior superior parietal and dorsal premotor cortices in improvising musicians, indicating more efficient audiomotor transformation. In the present study, we investigated the detailed performance characteristics underlying the ability of both groups of musicians to replicate music on the basis of aural perception alone. Twenty-two classically trained improvising and score-dependent musicians listened to short, unfamiliar two-part excerpts presented with headphones. They played along or replicated the excerpts by ear on a digital piano, either with or without aural feedback. In addition, they were asked to harmonize or transpose some of the excerpts either to a different key or to the relative minor. MIDI recordings of their performances were compared with recordings of the aural model. Concordance was expressed in an audiomotor alignment score computed with the help of music information retrieval algorithms. Significantly higher alignment scores were found when contrasting groups, voices, and tasks. The present study demonstrates the superior ability of improvising musicians to replicate both the pitch and rhythm of aurally perceived music at the keyboard, not only in the original key, but also in other tonalities. Taken together with the enhanced activation of the right dorsal frontoparietal network found in our previous fMRI study, these results underscore the conclusion that the practice of improvising music can be associated with enhanced audiomotor transformation in response to aurally perceived music.
LINK
BACKGROUND: Sarcopenic obesity significantly burdens health and autonomy. Strategies to intervene in or prevent sarcopenic obesity generally focus on losing body fat and building or maintaining muscle mass and function. For a lifestyle intervention, it is important to consider psychological aspects such as behavioral change techniques (BCTs) to elicit a long-lasting behavioral change.PURPOSE: The study was carried out to analyze BCTs used in exercise and nutritional interventions targeting community-dwelling adults around retirement age with sarcopenic obesity.METHODS: We conducted an analysis of articles cited in an existing systematic review on the effectiveness of exercise and nutritional interventions on physiological outcomes in community-dwelling adults around retirement age with sarcopenic obesity. We identified BCTs used in these studies by applying a standardized taxonomy.RESULTS: Only nine BCTs were identified. Most BCTs were not used intentionally (82 %), and those used derived from the implementation of lifestyle components, such as exercise classes ("instructions on how to perform a behavior," "demonstration of the behavior," "behavioral practice/rehearsal," and "body changes"). Only two studies used BCTs intentionally to reinforce adherence in their interventions.CONCLUSIONS: Few studies integrated BCTs in lifestyle interventions for community-dwelling persons around retirement age with sarcopenic obesity. Future studies on interventions to counteract sarcopenic obesity should include well-established BCTs to foster adherence and, therefore, their effectiveness.
Background: Physical inactivity is common during hospitalization. Physical activity has been described in different inpatient populations but never across a hospital. Purpose: To describe inpatient movement behavior and associated factors throughout a single university hospital. Methods: A prospective observational study was performed. Patients admitted to clinical wards were included. Behavioral mapping was undertaken for each participant between 9AM and 4PM. The location, physical activity, daily activity, and company of participants were described. Barriers to physical activity were examined using linear regression analyses. Results: In total, 345 participants from 19 different wards were included. The mean (SD) age was 61 (16) years and 57% of participants were male. In total, 65% of participants were able to walk independently. On average participants spent 86% of observed time in their room and 10% of their time moving. A physiotherapist or occupational therapist was present during 1% of the time, nursing staff and family were present 11% and 13%, respectively. Multivariate regression analysis showed the presence of an intravenous line (p = .039), urinary catheter (p = .031), being female (p = .034), or being dependent on others for walking (p = .016) to be positively associated with the time spent in bed. Age > 65, undergoing surgery, receiving encouragement by a nurse or physician, reporting a physical complaint or pain were not associated with the time spent in bed (P > .05). Conclusion: As family members and nursing staff spend more time with patients than physiotherapists or occupational therapists, increasing their involvement might be an important next step in the promotion of physical activity.
LINK
SOCIO-BEE proposes that community engagement and social innovation combined with Citizen Science (CS) through emerging technologies and playful interaction can bridge the gap between the capacity of communities to adopt more sustainable behaviours aligned with environmental policy objectives and between the citizen intentions and the real behaviour to act in favour of the environment (in this project, to reduce air pollution). Furthermore, community engagement can raise other citizens’ awareness of climate change and their own responses to it, through experimentation, better monitoring, and observation of the environment. This idea is emphasised in this project through the metaphor of bees’ behaviour (with queens, working and drone bees as main CS actors), interested stakeholders that aim at learning from results of CS evidence-based research (honey bears) and the Citizen Science hives as incubators of CS ideas and projects that will be tested in three different pilot sites (Ancona, Marousi and Ancona) and with different population: elderly people, everyday commuters and young adults, respectively. The SOCIO-BEE project ambitions the scalable activation of changes in citizens’ behaviour in support of pro-environment action groups, local sponsors, voluntary sector and policies in cities. This process will be carried out through low-cost technological innovations (CS enablers within the SOCIO BEE platform), together with the creation of proper instruments for institutions (Whitebook and toolkits with recommendations) that will contribute to the replication, upscaling, massive adoption and to the duration of the SOCIO-BEE project. The solution sustainability and maximum outreach will be ensured by proposing a set of public-private partnerships.For more information see the EU-website.