Biogas is produced from biomass by means of digestion. Treated to so-called ‘green gas’, it can replace natural gas. Alternatively, biogas can be used to produce electrical power and heat in a combined heat power (CHP) installation. In 2014 global biogas production was only 1% of natural gas production. In the future, biogas is expected to play a role in specific applications, e.g. to provide flexibility in electricity supply
LINK
The volume of biogas produced in agricultural areas is expected to increase in coming years. An increasing number of local and regional initiatives show a growing interest in decentralized energy production, wherein biogas can play a role. Biogas transport from production sites to user, i.e. a CHP, boiler or an upgrading installation, induces a scale advantage and an efficiency increase. Therefore the exploration of the costs and energy use of biogas transport using a dedicated infrastructure is needed. A model was developed to describe a regional biogas grid that is used to collect biogas from several digesters and deliver it to a central point. The model minimizes transport costs per volumetric unit of biogas in a region. Results are presented for different digester scales, different sizes of the biomass source area and two types of grid lay-out: a star lay-out and a fishbone lay-out. The model shows that transport costs in a fishbone lay-out are less than 10 Vct m3 for a digester scale of 100 m3 h1; for the star lay-outcosts can go up to 45 Vct m3. For 1800 m3 h1 digesters, these values are 4.0 Vct m3 and 6.1 Vct m3, respectively. The results indicate that cooperation between biogas producers in collecting biogas by means of a fishbone lay-out reduces the biogas transport costs relative to using a star lay-out. Merging smaller digesters into a smaller number of larger ones reduces the costs of biogas transport for the same biomass source area.
DOCUMENT
In the field of ‘renewable energy resources’ formation of biogas Biomass and biogas: potentials, efficiencies and flexibility is an important option. Biogas can be produced from biomass in a multistep process called anaerobic digestion (AD) and is usually performed in large digesters. Anaerobic digestion of biomass is mediated by various groups of microorganisms, which live in complex community structures. However, there is still limited knowledge on the relationships between the type of biomass and operational process parameters. This relates to the changes within the microbial community structure and the resulting overall biogas production efficiency. Opening this microbial black box could lead to an better understanding of on-going microbial processes, resulting in higher biogas yields and overall process efficiencies.
DOCUMENT
Organic wastes like cooking-waste, farm-waste and manure have detrimental effect on the environment, health and hygiene of people. Within India there are possibilities to manage the available biomass in an efficient way, which can bringenvironmental, health and economic benefits. Through anaerobic digestion, biomass can be converted into biogas and digestate, which can be used as renewable energy source and fertilizer respectively. However, there is a lack of knowledge on how to use the available biomass and, thus, its products in a beneficial way. This leads to the main question: How to fit biogas productionwithin the existing energy infrastructure of India? Our approach involves modelling biogas chains from production to consumption and then analyse several different options. Within the Flexigas project a flexible BioGas simulator is being created, which is capable of simulating biogas production and consumption process. The simulator takes into account the location andavailability of biomass, different biomass and biogas transport, anaerobic digesters, biogas upgraders and various cost involved in the biogas production process. A multi-touch User Interface is used for simulation control and result visualization. Results from the simulator shows how feasible it is to set up the biogas chains, its advantages and increases knowledge on effective biomass use.
DOCUMENT
Next-generation sequencing technology allows culture- independent analysis of species and genes present in a complex microbial community. Such metagenomics may overcome the inability to culture microbes in isolation. Microbial communities of interest are for example responsible for making biogas. Many applications in metagenomics focus on 16S RNA analysis. We here evaluate the possibility of whole genome analysis (WGS) as approach for metagenomics studies.Samples (Table 1) from three biogas installations fed with different feedstock were used for DNA isolation and WGS analysis. Short (75b) Illumina paired-end DNA sequence reads were generated and assembled into larger continuous stretches (contigs),AcknowledgementsResults show that WGS is feasible for complex community analysis. Large groups of organisms (for example the class Methanomicrobia) are present in all samples with a possible role in the biogas production pathway.Assemble reads into contigs•meta-velveth as metagenomics reads assemblerSequencesimilaritysearch•proteome reference database from all currently available Bacteria and Achaea genomesAssign hits to taxa•Lowest common ancestor method incorporated in MEGAN4Such studies will help to identify and use microbial species for future improvements of biogas production dependence on process parameters and feedstock.
DOCUMENT
Biogas plays an important role in many future renewable energy scenarios as a source of storable and easily extracted form of renewable energy. However, there remains uncertainty as to which sources of biomass can provide a net energy gain while being harvested in a sustainable, ecologically friendly manner. This study will focus on the utilization of common, naturally occurring grass species which are cut during landscape management and typically treated as a waste stream. This waste grass can be valorized through co-digestion with cow manure in a biogas production process. Through the construction of a biogas production model based on the methodology proposed by (Pierie, Moll, van Gemert, & Benders, 2012), a life cycle analysis (LCA) has been performed which determines the impacts and viability of using common grass in a digester to produce biogas. This model performs a material and energy flow analysis (MEFA) on the biogas production process and tracks several system indicators (or impact factors), including the process energy return on energy investment ((P)EROI), the ecological impact (measured in Eco Points), and the global warming potential (GWP, measured in terms of kg of CO2 equivalent). A case study was performed for the village of Hoogkerk in the north-east Netherlands, to determine the viability of producing a portion of the village’s energy requirements by biogas production using biomass waste streams (i.e. common grass and cow manure in a co-digestion process). This study concludes that biogas production from common grass can be an effective and sustainable source of energy, while reducing greenhouse gas emissions and negative environmental impacts when compared to alternate methods of energy production, such as biogas produced from maize and natural gas production.
DOCUMENT
In the field of ‘renewable energy resources’ formation of biogas is an important option. Biogas can be produced from biomass in a multistep process called anaerobic digestion (AD) and is usually performed in large digesters. Anaerobic digestion of biomass is mediated by various groups of microorganisms, which live in complex community structures. However, there is still limited knowledge on the relationships between the type of biomass and operational process parameters. This relates to the changes within the microbial community structure and the resulting overall biogas production efficiency. Opening this microbial black box could lead to an better understanding of on-going microbial processes, resulting in higher biogas yields and overall process efficiencies.
DOCUMENT
A model to describe biogas transport costs in a regional grid is presented. In the model biogas is collected to a central location by transport through dedicated pipelines. Costs have been calculated for two different lay-outs of the grid i.e. star and fishbone lay-out. The costs depend on the covered area and the size of the digesters. Model results show that in a star layout transport costs for small scale digesters are much higher than costs for large scale digesters and costs in a fishbone lay-out are lower than costs in a star lay-out.
DOCUMENT
Within the Flexigas project a model has been constructed which can analyze the efficiency, carbon footprint and environmental impact of anaerobic biogas production chains.
DOCUMENT
Decentralized biogas produced through co-digestion of biomass can play an important role in our future renewable energy mix. However the optimal design, planning and use of a biogas production chain is a daunting process. When looking into a biogas production chain one must take into account, first, the biomass availability in quantity, quality and the location, second, the energy demand in energy type, quantity and location and finally the needed machinery and infrastructure to connect them. During this process there are social, legal and environmental issues to overcome, but overall the financial aspects will mostly dictate viability. Hence, the complexity involved in linking the aforementioned aspects is difficult at most.
DOCUMENT