Background: In general people after stroke do not meet the recommendations for physical activity to conduct a healthy lifestyle. Programs to stimulate walking activity to increase physical activity are based on the available insights into barriers and facilitators to physical activity after stroke. However, these programs are not entirely successful. The purpose of this study was to comprehensively explore perceived barriers and facilitators to outdoor walking using a model of integrated biomedical and behavioral theory, the Physical Activity for people with a Disability model (PAD). Methods: Included were community dwelling respondents after stroke, classified ≥ 3 at the Functional Ambulation Categories (FAC), purposively sampled regarding the use of healthcare. The data was collected triangulating in a multi-methods approach, i.e. semi-structured, structured and focus-group interviews. A primarily deductive thematic content analysis using the PAD-model in a framework-analysis’ approach was conducted after verbatim transcription. Results: 36 respondents (FAC 3–5) participated in 16 semi-structured interviews, eight structured interviews and two focus-group interviews. The data from the interviews covered all domains of the PAD model. Intention, ability and opportunity determined outdoor walking activity. Personal factors determined the intention to walk outdoors, e.g. negative social influence, resulting from restrictive caregivers in the social environment, low self-efficacy influenced by physical environment, and also negative attitude towards physical activity. Walking ability was influenced by loss of balance and reduced walking distance and by impairments of motor control, cognition and aerobic capacity as well as fatigue. Opportunities arising from household responsibilities and lively social constructs facilitated outdoor walking. Conclusion: To stimulate outdoor walking activity, it seems important to influence the intention by addressing social influence, self-efficacy and attitude towards physical activity in the development of efficient interventions. At the same time, improvement of walking ability and creation of opportunity should be considered
DOCUMENT
BACKGROUND: Multimorbidity, the co-occurrence of two or more chronic medical conditions within a single individual, is increasingly becoming part of daily care of general medical practice. Literature-based discovery may help to investigate the patterns of multimorbidity and to integrate medical knowledge for improving healthcare delivery for individuals with co-occurring chronic conditions. OBJECTIVE: To explore the usefulness of literature-based discovery in primary care research through the key-case of finding associations between psychiatric and somatic diseases relevant to general practice in a large biomedical literature database (Medline). METHODS: By using literature based discovery for matching disease profiles as vectors in a high-dimensional associative concept space, co-occurrences of a broad spectrum of chronic medical conditions were matched for their potential in biomedicine. An experimental setting was chosen in parallel with expert evaluations and expert meetings to assess performance and to generate targets for integrating literature-based discovery in multidisciplinary medical research of psychiatric and somatic disease associations. RESULTS: Through stepwise reductions a reference set of 21,945 disease combinations was generated, from which a set of 166 combinations between psychiatric and somatic diseases was selected and assessed by text mining and expert evaluation. CONCLUSIONS: Literature-based discovery tools generate specific patterns of associations between psychiatric and somatic diseases: one subset was appraised as promising for further research; the other subset surprised the experts, leading to intricate discussions and further eliciting of frameworks of biomedical knowledge. These frameworks enable us to specify targets for further developing and integrating literature-based discovery in multidisciplinary research of general practice, psychology and psychiatry, and epidemiology.
DOCUMENT
This article explores the decision-making processes in the ongoing development of an AI-supported youth mental health app. Document analysis reveals decisions taken during the grant proposal and funding phase and reflects upon reasons why AI is incorporated in innovative youth mental health care. An innovative multilogue among the transdisciplinary team of researchers, covering AI-experts, biomedical engineers, ethicists, social scientists, psychiatrists and young experts by experience points out which decisions are taken how. This covers i) the role of a biomedical and exposomic understanding of psychiatry as compared to a phenomenological and experiential perspective, ii) the impact and limits of AI-co-creation by young experts by experience and mental health experts, and iii) the different perspectives regarding the impact of AI on autonomy, empowerment and human relationships. The multilogue does not merely highlight different steps taken during human decision-making in AI-development, it also raises awareness about the many complexities, and sometimes contradictions, when engaging in transdisciplinary work, and it points towards ethical challenges of digitalized youth mental health care.
LINK
Organ-on-a-chip technology holds great promise to revolutionize pharmaceutical drug discovery and development which nowadays is a tremendously expensive and inefficient process. It will enable faster, cheaper, physiologically relevant, and more reliable (standardized) assays for biomedical science and drug testing. In particular, it is anticipated that organ-on-a-chip technology can substantially replace animal drug testing with using the by far better models of true human cells. Despite this great potential and progress in the field, the technology still lacks standardized protocols and robust chip devices, which are absolutely needed for this technology to bring the abovementioned potential to fruition. Of particular interest is heart-on-a-chip for drug and cardiotoxicity screening. There is presently no preclinical test system predicting the most important features of cardiac safety accurately and cost-effectively. The main goal of this project is to fabricate standardized, robust generic heart-on-a-chip demonstrator devices that will be validated and further optimized to generate new physiologically relevant models to study cardiotoxicity in vitro. To achieve this goal various aspects will be considered, including (i) the search for alternative chip materials to replace PDMS, (ii) inner chip surface modification and treatment (chemistry and topology), (iii) achieving 2D/3D cardiomyocyte (long term) cell culture and cellular alignment within the chip device, (iv) the possibility of integrating in-line sensors in the devices and, finally, (v) the overall chip design. The achieved standardized heart-on-a-chip technology will be adopted by pharmaceutical industry. This proposed project offers a unique opportunity for the Netherlands, and Twente in particular, which has relevant expertise, potential, and future perspective in this field as it hosts world-leading companies pioneering various core aspects of the technology that are relevant for organs-on-chips, combined with two world-leading research institutes within the University of Twente.
In this project, Photons in Focus, researchers from The Hague University of Applied Sciences will work together with the company Photosynthetic to fabricate high-quality microlenses that will optimally focus light onto microscopic light detectors. Specifically, the microlenses will be designed to focus light onto superconducting nanowire single-photon detectors (SNSPDs) from the company Single Quantum. SNSPDs are cryogenic single-photon detectors with photon detection efficiencies up to 99% and timing resolutions down to 15 picosecond. Recently, Single Quantum has been developing arrays of SNSPDs for free-space biomedical imaging and deep space communications. The photon detection efficiency of these arrays is suboptimal, because 15-20% of the light falls onto nonsensitive areas. In Photons in Focus, fabrication of two types of microstructures will be explored for optimally focusing light onto these SNSPDs and improving the photon detection efficiency. First, 3-dimensional microlenses will be created at Photosynthetic using their method of dual-wavelength volumetric microlithography. Second, phase-reversal Fresnel zone plates will be fabricated using standard 2-dimensional photolithography at The Hague University of Applied Sciences. Both types of microstructures will be tested for their focusing properties and potential optical losses, and their ability to enhance to photon detection efficiency of SNSPDs in cryogenic conditions.