Blood draws for laboratory investigations are essential for patient management in neonatal intensive care units (NICU). When blood samples clot before analysis, they are rejected, which delays treatment decisions and necessitates repeated sampling.
LINK
Young pediatric patients who undergo venipuncture or capillary blood sampling often experience high levels of pain and anxiety. This often results in distressed young patients and their parents, increased treatment times, and a higher workload for healthcare professionals. Social robots are a new and promising tool to mitigate children’s pain and anxiety. This study aims to purposefully design and test a social robot for mitigating stress and anxiety during blood draw of children. We first programmed a social robot based on the requirements expressed by experienced healthcare professionals during focus group sessions. Next, we designed a randomized controlled experiment in which the social robot was applied as a distraction method to measure its capacity to mitigate pain and anxiety in children during blood draw in a children’s hospital setting. Children who interacted with the robot showed significantly lower levels of anxiety before actual blood collection, compared to children who received regular medical treatment. Children in the middle classes of primary school (aged 6–9) seemed especially sensitive to the robot’s ability to mitigate pain and anxiety before blood draw. Children’s parents overall expressed strong positive attitudes toward the use and effectiveness of the social robot for mitigating pain and anxiety. The results of this study demonstrate that social robots can be considered a new and effective tool for lowering children’s anxiety prior to the distressing medical procedure of blood collection.
LINK
To accelerate differentiation between Staphylococcus aureus and Coagulase Negative Staphylococci (CNS), this study aimed to compare six different DNA extraction methods from 2 commonly used blood culture materials, i.e. BACTEC and Bact/ALERT. Furthermore, we analyzed the effect of reduced blood culture times for detection of Staphylococci directly from blood culture material. A real-time PCR duplex assay was used to compare 6 different DNA isolation protocols on two different blood culture systems. Negative blood culture material was spiked with MRSA. Bacterial DNA was isolated with: automated extractor EasyMAG (3 protocols), automated extractor MagNA Pure LC (LC Microbiology Kit MGrade), a manual kit MolYsis Plus, and a combination between MolYsis Plus and the EasyMAG. The most optimal isolation method was used to evaluate reduced bacterial culture times. Bacterial DNA isolation with the MolYsis Plus kit in combination with the specific B protocol on the EasyMAG resulted in the most sensitive detection of S.aureus, with a detection limit of 10 CFU/ml, in Bact/ALERT material, whereas using BACTEC resulted in a detection limit of 100 CFU/ml. An initial S.aureus load of 1 CFU/ml blood can be detected after 5 hours of culture in Bact/ALERT3D by combining the sensitive isolation method and the tuf LightCycler assay.
DOCUMENT
Nano and micro polymeric particles (NMPs) are a point of concern by environmentalists and toxicologist for the past years. Their presence has been detected in many environmental bodies and even in more recently human blood as well. One of the most common paths these particles take to enter living organisms is via water consumption. However, despite the efforts of different academic and other knowledge groups, there is no consensus about standards methods which can be used to qualifying and quantifying these particles, especially the submicrometric ones. Many different techniques have been proposed like field flow fractionation (FFF) followed by multi angle laser scattering (MALS), pyrolysis-GC and scanning electron microscopy (SEM). Additionally, the sampling collection and preparation is also considered a difficult step, as such particles are mostly present in very low concentration. Nanocatcher proposes the use of submerged drones as a sampling collection tool to monitor the presence of submicrometric polymeric particles in water bodies. The sample collections will be done using special membrane systems specially designed for the drone. After collected, the samples will be analysed using FFF+MALS, SEM and Py-GC. If proven successful, the use of submerged drones can strongly facilitate sampling and mapping of submicrometric polymeric particles in water bodies and will provide an extensive and comprehensive map of the presence of these particles in such environment.