In today’s city environments, extreme weather conditions are a fact oflife. Amsterdam, Mumbai, Nairobi or Sydney… climate change issuesneed to be tackled all around the world.In the last couple of decades, Amsterdam has dealt with largeramounts of rainwater, severe heat stress and a decreased biodiversity.In order to strengthen urban resilience to climate change, blue-green(BG) roofs are increasingly being introduced. BG roofs placean additional water layer underneath the green layer. The idea is thatthese roofs reduce runoff after rainfall by retaining precipitation andmitigate heat stress, caused by increased evapotranspiration (the sumof evaporation from the land surface and transpiration from plants)and a higher albedo effect (the ability of surfaces to reflect sunlight).
MULTIFILE
At present, leading international agencies, such as the United Nations Environmental Programme, are largely focused on what they claim to be ‘win-win’ scenarios of ‘sustainable development’ rhetoric. These combine social, economic and environmental objectives. However, as noted by the ‘Scientists’ Warning to Humanity’, environmental integrity is the essential precondition for the healthy functioning of social and economic systems, and thus environmental protection needs to be prioritized in policy and practice. Ecological sustainability cannot be reached without realizing that population growth and economic growth, with attendant increased rates of depletion of natural resources, pollution, and general environmental degradation, are the root causes of unsustainability. This article argues that to strategically address ecological unsustainability, the social, economic and political barriers to addressing the current economic model and population growth need to be overcome. Strategic solutions proposed to the current neoliberal economy are generic – namely, degrowth, a steady-state economy, and a ‘circular economy’. Solutions to demographic issues must be sensitive to the countries' cultural, social, political and economic factors to be effective as fertility differs from country to country, and culture to culture. As discussed here, Mediterranean countries have the lowest fertility in the world, while many countries in Africa, and some in Asia, South America have stable but consistently high birthrates. This is discussed using three case studies - Tanzania, Italy, and Cambodia, focusing on the "best case" policy practice that offers more realistic hope for successful sustainability. https://doi.org/10.1007/s41207-019-0139-4 LinkedIn: https://www.linkedin.com/in/helenkopnina/
MULTIFILE
Some researchers insist that sustainability should be represented as a continuous quest, doubting that there is the ‘right’ way to be sustainable. Acknowledging the immensity of sustainability challenges, this article takes a different perspective, arguing that without understanding of concrete barriers and seeking solutions, the challenge of addressing unsustainable practices becomes unsurmountable. This article will summarize research in sustainability literature that indicates that sustainability requires a constant human population, as well as ecologically benign method of production. This article will survey a number of helpful frameworks that address the key obstacles to sustainability, namely population growth, and unsustainable production and consumption. These frameworks are discussed in the context of business-level solutions and production systems. As illustrated by examples of best practices as well as potential pitfalls associated with each system, these systems have the potential to move the quest for sustainability beyond ‘business as usual.’ https://doi.org/10.1007/s10668-015-9723-1 LinkedIn: https://www.linkedin.com/in/helenkopnina/
MULTIFILE
The seaweed aquaculture sector, aimed at cultivation of macroalgal biomass to be converted into commercial applications, can be placed within a sustainable and circular economy framework. This bio-based sector has the potential to aid the European Union meet multiple EU Bioeconomy Strategy, EU Green Deal and Blue Growth Strategy objectives. Seaweeds play a crucial ecological role within the marine environment and provide several ecosystem services, from the take up of excess nutrients from surrounding seawater to oxygen production and potentially carbon sequestration. Sea lettuce, Ulva spp., is a green seaweed, growing wild in the Atlantic Ocean and North Sea. Sea lettuce has a high nutritional value and is a promising source for food, animal feed, cosmetics and more. Sea lettuce, when produced in controlled conditions like aquaculture, can supplement our diet with healthy and safe proteins, fibres and vitamins. However, at this moment, Sea lettuce is hardly exploited as resource because of its unfamiliarity but also lack of knowledge about its growth cycle, its interaction with microbiota and eventually, possible applications. Even, it is unknown which Ulva species are available for aquaculture (algaculture) and how these species can contribute to a sustainable aquaculture biomass production. The AQULVA project aims to investigate which Ulva species are available in the North Sea and Wadden Sea which can be utilised in onshore aquaculture production. Modern genomic, microbiomic and metabolomic profiling techniques alongside ecophysiological production research must reveal suitable Ulva selections with high nutritional value for sustainable onshore biomass production. Selected Ulva spp lines will be used for production of healthy and safe foods, anti-aging cosmetics and added value animal feed supplements for dairy farming. This applied research is in cooperation with a network of SME’s, Research Institutes and Universities of Applied Science and is liaised with EU initiatives like the EU-COST action “SeaWheat”.