Implicit (IF) and explicit (EF) feedback are two motor learning strategies that have been demonstrated to alter biomechanical movement patterns. While both strategies have been utilized for injury prevention, it remains unclear which strategy may be more effective. PURPOSE: To examine the effects of reduced relative IF and EF feedback on lower extremity landing mechanics. METHODS: Seventeen participants (23.5±0.9 years, 1.72±0.1m, 67.7±11.5kg) were randomly assigned to three groups: IF (n=6), EF (n=5), and Control (CG) (n=6). A box-drop jump task was performed three times a week for six weeks. Testing occurred before and after 6 weeks of intervention. IF and EF were provided by ? video feedback with instructions, while CG received no feedback. IF were instructed to focus their attention outside their body, while EF were instructed to focus their attention to their lower extremities. Intervention sessions were partitioned into 100% feedback, 33% feedback, and 16.6% feedback frequency phases. Participants viewed video recordings of their task to analyze their jump-landing mechanics from both a sagittal and frontal plane cameras. Participants viewed 2 video recordings per camera, once in real-time and once in slow motion. Multivariate analysis of variance was conducted to compare differences between groups and time for hip abduction angle (HA), knee abduction moment (KAM), and knee flexion angle (KF). RESULTS: No statistically significant difference (p>0.05) was found for: HA (CG:pre=-9.85±5.3, post=-7.36±8.65; IF:pre=-4.17±2.67, post=-7.52±5.27; EF:pre=-5.68±6.12, post=-5.98±5.43), KAM (CG:pre=-0.5±0.3, post=-0.34±0.13; IF:pre=-0.5±0.21, post=-0.48±0.13; EF:pre=-0.48±0.12, post=-0.46±0.26), and KF (CG:pre=-92.26±9.12, post=-100.33±15.2; IF:pre=-106.37±16.34, post=-103.45±19.97; EF:pre=-100.32±11.4, post=-112.4±18.22). CONCLUSION: We did not find statistically significant differences for any dependent measures between groups from pre to post-test. It should be noted that IF HA slightly decreased from pre to post-test whereas it increased for CG. For KAM, CG was lower on post-test comparing to IF and EF. EF and CG trended to decrease from pre to post-test, while IF slightly increased KF. Our preliminary findings partially support that implicit and explicit feedback alters lower body mechanics while jumping.
LINK
Background: The importance of clarifying goals and providing process feedback for student learning has been widely acknowledged. From a Self-Determination Theory perspective, it is suggested that motivational and learning gains will be obtained because in well-structured learning environments, when goals and process feedback are provided, students will feel more effective (need for competence), more in charge over their own learning (need for autonomy) and experience a more positive classroom atmosphere (need for relatedness). Yet, in spite of the growing theoretical interest in goal clarification and process feedback in the context of physical education (PE), little experimental research is available about this topic. Purpose: The present study quasi-experimentally investigated whether the presence of goal clarification and process feedback positively affects students’ need satisfaction and frustration. Method: Twenty classes from five schools with 492 seventh grade PE students participated in this quasi-experimental study. Within each school, four classes were randomly assigned to one of the four experimental conditions (n = 121, n = 117, n = 126 and n = 128) in a 2 × 2 factorial design, in which goal clarification (absence vs. presence) and process feedback (absence vs. presence) were experimentally manipulated. The experimental lesson consisted of a PE lesson on handstand (a relatively new skill for seventh grade students), taught by one and the same teacher who went to the school of the students to teach the lesson. Depending on the experimental condition, the teacher either started the lesson explaining the goals, or refrained from explaining the goals. Throughout the lesson the teacher either provided process feedback, or refrained from providing process feedback. All other instructions were similar across conditions, with videos of exercises of differential levels of difficulty provided to the students. All experimental lessons were observed by a research-assistant to discern whether manipulations were provided according to a condition-specific script. One week prior to participating in the experimental lesson, data on students’ need-based experiences (i.e. quantitatively) were gathered. Directly after students’ participation in the experimental lesson, data on students’ perceptions of goal clarification and process feedback, need-based experiences (i.e. quantitatively) and experiences in general (i.e. qualitatively) were gathered. Results and discussion: The questionnaire data and observations revealed that manipulations were provided according to the lesson-scripts. Rejecting our hypothesis, quantitative analyses indicated no differences in need satisfaction across conditions, as students were equally satisfied in their need for competence, autonomy and relatedness regardless of whether the teacher provided goal clarification and process feedback, only goal clarification, only process feedback or none. Similar results were found for need frustration. Qualitative analyses indicated that, in all four conditions, aspects of the experimental lesson made students feel more effective, more in charge over their own learning and experience a more positive classroom atmosphere. Our results suggest that under certain conditions, lessons can be perceived as highly need-satisfying by students, even if the teacher does not verbally and explicitly clarify the goals and/ or provides process feedback. Perhaps, students were able to self-generate goals and feedback based on the instructional videos.
Background: This follow-up study investigated the year-round effects of a four-week randomized controlled trial using different types of feedback on employees’ physical activity, including a need-supportive coach intervention. Methods: Participants (n=227) were randomly assigned to a Minimal Intervention Group (MIG; no feedback), a Pedometer Group (PG; feedback on daily steps only), a Display Group (DG; feedback on daily steps, on daily moderateto-vigorous physical activity [MVPA] and on total energy expenditure [EE]), or a Coaching Group (CoachG; same as DG with need supportive coaching). Daily physical activity level (PAL; Metabolic Equivalent of Task [MET]), number of daily steps, daily minutes of moderate to vigorous physical activity (MVPA), active daily EE (EE>3 METs) and total daily EE were measured at five time points: before the start of the 4-week intervention, one week after the intervention, and 3, 6, and 12 months after the intervention. Results: For minutes of MVPA, MIG showed higher mean change scores compared with the DG. For steps and daily minutes of MVPA, significantly lower mean change scores emerged for MIG compared with the PG. Participants of the CoachG showed significantly higher change scores in PAL, steps, minutes of MVPA, active EE, total EE compared with the MIG. As hypothesized, participants of the CoachG had significantly higher mean change scores in PAL and total EE compared with groups that only received feedback. However, no significant differences were found for steps, minutes of MVPA and active EE between CoachG and PG. Conclusions: Receiving additional need-supportive coaching resulted in a higher PAL and active EE compared with measurement (display) feedback only. These findings suggest to combine feedback on physical activity with personal coaching in order to facilitate long-term behavioral change. When it comes to increasing steps, minutes of MVPA or active EE, a pedometer constitutes a sufficient tool. Trial registration: Clinical Trails.gov NCT01432327. Date registered: 12 September 2011
Despite the recognized benefits of running for promoting overall health, its widespread adoption faces a significant challenge due to high injury rates. In 2022, runners reported 660,000 injuries, constituting 13% of the total 5.1 million sports-related injuries in the Netherlands. This translates to a disturbing average of 5.5 injuries per 1,000 hours of running, significantly higher than other sports such as fitness (1.5 injuries per 1,000 hours). Moreover, running serves as the foundation of locomotion in various sports. This emphasizes the need for targeted injury prevention strategies and rehabilitation measures. Recognizing this social issue, wearable technologies have the potential to improve motor learning, reduce injury risks, and optimize overall running performance. However, unlocking their full potential requires a nuanced understanding of the information conveyed to runners. To address this, a collaborative project merges Movella’s motion capture technology with Saxion’s expertise in e-textiles and user-centered design. The result is the development of a smart garment with accurate motion capture technology and personalized haptic feedback. By integrating both sensor and actuator technology, feedback can be provided to communicate effective risks and intuitive directional information from a user-centered perspective, leaving visual and auditory cues available for other tasks. This exploratory project aims to prioritize wearability by focusing on robust sensor and actuator fixation, a suitable vibration intensity and responsiveness of the system. The developed prototype is used to identify appropriate body locations for vibrotactile stimulation, refine running styles and to design effective vibration patterns with the overarching objective to promote motor learning and reduce the risk of injuries. Ultimately, this collaboration aims to drive innovation in sports and health technology across different athletic disciplines and rehabilitation settings.
Performance feedback is an important mechanism of adaptation in learning theories, as it provides one of the motivations for organizations to learn (Pettit, Crossan, and Vera 2017). Embedded in the behavioral theory of the firm, organizational learning from performance feedback predicts the probability for organizations to change with an emphasis on organizational aspirations, which serve as a threshold against which absolute performance is evaluated (Cyert and March 1963; Greve 2003). It postulates that performance becomes a ‘problem’, or the trigger to search for alternative procedures, strategies, products and behaviors, when performance is below that threshold. This search is known as problemistic search. Missing from this body of research, is empirically grounded understanding if the characteristics of performance feedback over time matter for the triggering function of the feedback. I explore this gap. This investigation adds temporality as a dimension of the performance feedback concept guided by a worldview of ongoing change and flux where conditions and choices are not given, but made relevant by actors and enacted upon (Tsoukas and Chia 2002). The general aim of the study is to complement the current knowledge of performance feedback as a trigger for problemistic search with an explicit process temporal approach. The main question guiding this project is how temporal patterns of performance feedback influence organizational change, which I answer in four chapters, each zooming into one sub-question.First, I focus on the temporal order of performance feedback by examining performance feedback and change sequences organizations go through. In this section time is under study and the goal is to explore how feedback patterns have evolved over time, just as the change states organizations pass through. Second, I focus on the plurality of performance feedback by investigating performance feedback from multiple aspiration levels (i.e. multiple qualitatively different metrics and multiple reference points) and how over time clusters of performance feedback sequences have evolved. Next, I look into the rate and scope of change relative to performance feedback sequences and add an element of signal strength to the feedback. In the last chapter, time is a predictor (in the sequences), and, it is under study (in the timing of responses). I focus on the timing of organizational responses in relation to performance feedback sequences of multiple metrics and reference points.In sum, all chapters are guided by the timing problem of performance feedback, meaning that performance feedback does not come ‘available’ at a single point in time. Similarly to stones with unequal weight dropped in the river, performance feedback with different strength comes available at multiple points in time and it is plausible that sometimes it is considered by decision-makers as problematic and sometimes it is not, because of the sequence it is part of. Overall, the investigation is grounded in the general principles of organizational learning from performance feedback, and the concept of time as duration, sequences and timing, with a focus on specification of when things happen. The context of the study is universities of applied sciences and hotels in The Netherlands. Project partner: Tilburg University, School of Social and Behavioral Sciences, Department of Organization Studies