Rationale: It is well established that resting energy expenditure (REE) decreases with age. Data derived from indirect calorimetry (IC) are still limited with respect to the number of high aged individuals, BMI groups and health conditions. Therefore, IC generated REE of the BASAROT sample and those calculated according to the Harris-Benedict (HB) equation were used to re-evaluate the proposed association between REE and age. Methods: The IC-BASAROT sample combines the result of IC performed in 2622 individuals from 10 centers (7 Germany, 2 Italy, 1 Netherlands) done under strictly standardized conditions (e.g. at least 8h of fasting) in free-living, mostly healthy adults aged 18 to 100 years including all BMI ranges. IC was performed by canopy technique (Cosmed Quark RMR/Sensor Medics Vmax29) in 96.5% of cases and by face mask (Cosmed Fitmate) in 3.5%. Weight was measured by calibrated scales and height was determined to the nearest of 1mm. Results: REE in the total sample (BMI: 26.9±9.1 kg/m², 43.7±17.6 y) correlated more positively with body weight than with BMI (r=0.768; p<0.001 vs. r=0.571; p<0.001). Gender+body weight explained 75% of REE variance, gender+BMI 69% and gender+age only 28%. To reduce confounding by body weight we performed age-related analysis in the subgroup of women weighing 50-79 kg (n=780, BMI: 23.4±3.4 kg/m², 41.4±18.5 y) and men weighing 60-89 kg (n=500, BMI: 24.9±3.0 kg/m², 47.5±19.3 y) and compared results with REEHB (tab. 1). IC results from 18 to 100 y showed an approximately 50% lower decrease in REE than HB in women (-129 kcal/d vs. - 257 kcal/d) and in men (-200 kcal/d vs. -406 kcal/d, tab. 1). REEIC (n=1280) did not correlate with age (r=-0.042; p=0.132). In line, we observed a significant overestimation of REE by HB up to 39 y in both sexes and an underestimation in men 60 y of age and older. Conclusion: Age-related decline in REE appears to be lower than expected and might due to changes in body composition both in the younger and older generation. No indication of the often proposed systematic overestimation of HB in women was seen. Overall, findings should be considered in future models for estimating REE.
LINK
Aim and method: To examine in obese people the potential effectiveness of a six-week, two times weekly aquajogging program on body composition, fitness, health-related quality of life and exercise beliefs. Fifteen otherwise healthy obese persons participated in a pilot study. Results: Total fat mass and waist circumference decreased 1.4 kg (p = .03) and 3.1 cm (p = .005) respectively. The distance in the Six-Minute Walk Test increased 41 meters (p = .001). Three scales of the Impact of Weight on Quality of Life-Lite questionnaire improved: physical function (p = .008), self-esteem (p = .004), and public distress (p = .04). Increased perceived exercise benefits (p = .02) and decreased embarrassment (p = .03) were observed. Conclusions: Aquajogging was associated with reduced body fat and waist circumference, and improved aerobic fitness and quality of life. These findings suggest the usefulness of conducting a randomized controlled trial with long-term outcome assessments.
The aim of the study was to investigate whether an increased risk of injury occurrence can be determined through frequent anthropometric measurements in elite-standard youth soccer players. Over the course of one season, we followed 101 male elite-standard youth soccer players between 11 and 19 years of age. Height and body mass were monitored at monthly measurement intervals and fat percentage was assessed every 3 months by use of the sum of skinfold method. Growth in height (cm), alternations in body mass index (kg/m(2)), fat percentage and fat-free mass index (kg/m(2)) were calculated. Injuries were recorded in accordance with the recommendations of the FIFA Consensus Model for Injury Registration. Odds ratio scores and 95% confidence intervals were calculated using binary logistic regression analyses. The following anthropometric injury risk factors were identified: ≥ 0.6 centimeter growth per month (p=0.03; OR=1.63; 95% CI: 1.06-2.52), ≥ 0.3 kg/m(2) increase of body mass index value per month (p=0.03; OR=1.61; 95% CI: 1.04-2.49) and low fat percentage; i. e., < 7% for players aged 11-16 and < 5% for players over 16 years (p=0.01; OR=1.81; 95% CI: 1.18-2.76). Individual monitoring of anthropometrics provides useful information to determine increased risk of injury occurrence in elite-standard youth soccer.