Dit onderzoek richt zich op het verduurzamen van vakantieparken, met specifieke aandacht voor het gasverbruik. Verschillende opties zijn overwogen, waaronder elektriciteitsopslag, een boiler, WKO-systeem en warmteopslag in zouten.Voor dit onderzoek is een rekenmodel ontwikkeld om de gasbesparing, investering en terugverdientijd van een warmteopslag te bepalen. Belangrijke gegevens voor het model zijn de actuele gasprijs, de omrekenfactor van kubieke meter gas naar kWh en de dagelijkse opwekking van PV-panelen en thermische zonnecollectoren. Het onderzoek richt zich specifiek op de verduurzaming van het douchen op vakantieparken. Vervolgens is er per vakantiepark gekeken welke optie het meest geschikt is daarna of deze optie economisch rendabel is.
DOCUMENT
The Heating Ventilation and Air Conditioning (HVAC) sector is responsible for a large part of the total worldwide energy consumption, a significant part of which is caused by incorrect operation of controls and maintenance. HVAC systems are becoming increasingly complex, especially due to multi-commodity energy sources, and as a result, the chance of failures in systems and controls will increase. Therefore, systems that diagnose energy performance are of paramount importance. However, despite much research on Fault Detection and Diagnosis (FDD) methods for HVAC systems, they are rarely applied. One major reason is that proposed methods are different from the approaches taken by HVAC designers who employ process and instrumentation diagrams (P&IDs). This led to the following main research question: Which FDD architecture is suitable for HVAC systems in general to support the set up and implementation of FDD methods, including energy performance diagnosis? First, an energy performance FDD architecture based on information embedded in P&IDs was elaborated. The new FDD method, called the 4S3F method, combines systems theory with data analysis. In the 4S3F method, the detection and diagnosis phases are separated. The symptoms and faults are classified into 4 types of symptoms (deviations from balance equations, operating states (OS) and energy performance (EP), and additional information) and 3 types of faults (component, control and model faults). Second, the 4S3F method has been tested in four case studies. In the first case study, the symptom detection part was tested using historical Building Management System (BMS) data for a whole year: the combined heat and power plant of the THUAS (The Hague University of Applied Sciences) building in Delft, including an aquifer thermal energy storage (ATES) system, a heat pump, a gas boiler and hot and cold water hydronic systems. This case study showed that balance, EP and OS symptoms can be extracted from the P&ID and the presence of symptoms detected. In the second case study, a proof of principle of the fault diagnosis part of the 4S3F method was successfully performed on the same HVAC system extracting possible component and control faults from the P&ID. A Bayesian Network diagnostic, which mimics the way of diagnosis by HVAC engineers, was applied to identify the probability of all possible faults by interpreting the symptoms. The diagnostic Bayesian network (DBN) was set up in accordance with the P&ID, i.e., with the same structure. Energy savings from fault corrections were estimated to be up to 25% of the primary energy consumption, while the HVAC system was initially considered to have an excellent performance. In the third case study, a demand-driven ventilation system (DCV) was analysed. The analysis showed that the 4S3F method works also to identify faults on an air ventilation system.
DOCUMENT
In practice, faults in building installations are seldom noticed because automated systems to diagnose such faults are not common use, despite many proposed methods: they are cumbersome to apply and not matching the way of thinking of HVAC engineers. Additionally, fault diagnosis and energy performance diagnosis are seldom combined, while energy wastage is mostly a consequence of component, sensors or control faults. In this paper new advances on the 4S3F diagnose framework for automated diagnostic of energy waste in HVAC systems are presented. The architecture of HVAC systems can be derived from a process and instrumentation diagram (P&ID) usually set up by HVAC designers. The paper demonstrates how all possible faults and symptoms can be extracted on a very structured way from the P&ID, and classified in 4 types of symptoms (deviations from balance equations, operational states, energy performances or additional information) and 3 types of faults (component, control and model faults). Symptoms and faults are related to each other through Diagnostic Bayesian Networks (DBNs) which work as an expert system. During operation of the HVAC system the data from the BMS is converted to symptoms, which are fed to the DBN. The DBN analyses the symptoms and determines the probability of faults. Generic indicators are proposed for the 4 types of symptoms. Standard DBN models for common components, controls and models are developed and it is demonstrated how to combine them in order to represent the complete HVAC system. Both the symptom and the fault identification parts are tested on historical BMS data of an ATES system including heat pump, boiler, solar panels, and hydronic systems. The energy savings resulting from fault corrections are estimated and amount 25%. Finally, the 4S3F method is extended to hard and soft sensor faults. Sensors are the core of any FDD system and any control system. Automated diagnostic of sensor faults is therefore essential. By considering hard sensors as components and soft sensors as models, they can be integrated into the 4S3F method.
DOCUMENT
Due to the existing pressure for a more rational use of the water, many public managers and industries have to re-think/adapt their processes towards a more circular approach. Such pressure is even more critical in the Rio Doce region, Minas Gerais, due to the large environmental accident occurred in 2015. Cenibra (pulp mill) is an example of such industries due to the fact that it is situated in the river basin and that it has a water demanding process. The current proposal is meant as an academic and engineering study to propose possible solutions to decrease the total water consumption of the mill and, thus, decrease the total stress on the Rio Doce basin. The work will be divided in three working packages, namely: (i) evaluation (modelling) of the mill process and water balance (ii) application and operation of a pilot scale wastewater treatment plant (iii) analysis of the impacts caused by the improvement of the process. The second work package will also be conducted (in parallel) with a lab scale setup in The Netherlands to allow fast adjustments and broaden evaluation of the setup/process performance. The actions will focus on reducing the mill total water consumption in 20%.
Wat is de mogelijke rol van lokale duurzame energiesystemen en –initiatieven in de overgang naar een duurzame samenleving? En hoe kunnen op lokale toepassing gerichte innovaties worden ontwikkeld en toegepast op een zodanige manier dat deze bij lokale systemen en initiatieven aansluiten?Deze vragen staan centraal in dit onderzoeksproject dat zich richt op innovaties die rekening houden met een grotere rol van burgers bij een duurzame energievoorziening. Het project behelst echter meer dan het verrichten van onderzoek. Het beoogt bouwstenen te leveren voor een duurzame samenleving waarin meer ruimte is voor lokale (burger)initiatieven. We stellen drie deelprojecten voor:1. een vergelijkende studie naar energiecoöperaties en vergelijkbare innovatieve initiatieven, binnen en buiten Nederland, in heden en verleden. Daarbij hopen we lering te kunnen trekken uit de succesvolle ervaringen in Denemarken en Oostenrijk en van innovaties door coöperatiesen collectieven in het verleden.2. een analyse van energie-innovaties die beogen aan te sluiten bij lokale energiesystemen. Concreet zal het onderzoek zich richten op speciale batterijen, ontwikkeld dor het bedrijf Dr.Ten, en een soort slimme grote zoneboiler, ontwikkeld door het gelijknamige bedrijf Ecovat.3. De ontwikkeling van drie scenario’s, gebaseerd op inzichten uit studies 1 en 2. De scenario’s zullen bijvoorbeeld inhoudelijk verschillen in de mate waarin deze geïntegreerd zijn in bestaande energiesystemen. Deze zullen worden ontwikkeld en besproken met relevante stakeholders.Het onderzoek moet leiden tot een nauwkeurig overzicht van de mate van interesse en betrokkenheid van stakeholders en van de beperkingen en mogelijkheden van lokale energiesystemen en daarbij betrokken technologie. Ook leidt het tot een routemap voor duurzame energiesystemen op lokaal niveau. Het project heeft een technisch aspect, onderzoek naar verfijning en ontwikkeling van de technologie en een sociaal en normatief aspect, studies naar aansluitingsmogelijkheden bij de wensen en mogelijkheden van burgers, instanties en bedrijven in Noord-Nederland. Bovenal is het integratief en ontwerpend van karakter.This research proposal will explore new socio- technical configurations of local community-based sustainable energy systems. Energy collectives successfully combine technological and societal innovations, developing new business and organization models. A better understanding of their dynamics and needs will contribute to their continued success and thereby contribute to fulfilling the Top Sector’s Agenda. This work will also enhance the knowledge position of the Netherlands on this topic. Currently, over 500 local energy collectives are active in The Netherlands, many of them aim to produce their own sustainable energy, with thousands more in Europe. These collectives search for a new more local-based ways of organizing a sustainable society, including more direct democratic decision-making and influence on local living environment. The development of the collectives is enabled by openings in policy but –evenly important - by innovations in local energy production technologies (solar panels, windmills, biogas installations). Their future role in the sustainable energy transition can be strengthened by careful aligning new organizational and technological innovations in local energy production, storage and smart micro-grids.
Decentrale energiewekking wordt een belangrijk onderdeel van het laagspanningsnet. Een nieuwe uitdaging is hoe om te gaan met piekbelasting (zowel vraag als aanbod van energie) in het netwerk. Een mogelijke oplossing hiervoor is slimme sturing (demand-side management) binnen microgrids. Aardehuizen heeft als energy community interesse in verbetering van de zelfconsumptie van de eigen opgewekte energie en in het geautomatiseerd delen en onderling verrekenen van energie, b.v. via blockchain. In het kader van dit KIEM project willen de partners een open ICT-platform ontwikkelen waarin energieopwekking en verbruik wordt gemonitord, een buurtbatterij en warm waterboilers slim worden gestuurd en op termijn energie onderling verrekend kan worden via blockchain. Bij het project zijn de volgende partners betrokken: het lectoraat Duurzame Energievoorziening van Saxion, de onderzoeksgroep CAES van Universiteit Twente, Aardehuizen VvE, Dr. Ten, Bosch-Nefit, stichting Kiemt, Natuurlijk Huus Raalte en Kiekebosch communicatie. De innovatie die het consortium wil realiseren: een community gebaseerde, geïntegreerde sturing van buurtbatterij en warm waterboilers welke wordt ontwikkeld in een open innovatiemodel met bedrijven en bewoners.