There is an ongoing social debate concerning Dutch primary school design related to persistent physical environmental problems such as poor indoor quality and inflexible spatial elements. Increasing complexity and building construction process failures, as well as inexperienced school principals, also seem to be important impact factors. This analysis employed a multi-level model which reflects the interrelationship between needs, interests and views, which are in turn responsible for physiological, psychological and biophysical problems in the school-building design process. It shows that antagonistic interests seem to impede rational innovative pathways which could be used to enhance synergetic solutions. These interests impact on the process by affecting the objective decision-making process adversely, making the problems faced unnecessarily complex due to competing subjective desires. The new approach proposed here increases awareness by mirroring actors’ behaviour and their most important needs, possibly leading to a decrease in school-building design problems. By means of introducing a positive psychological approach and viewing these profound human needs as a social fractal, it is possible to create a new paradigm which might solve the school-design crisis. As a lever for changing the current processes, new tangible school-building design parameters also might become available. The aim of this study was to analyse the current problem patterns and assess the possibility of producing more synergetic solution patterns. On this basis, we developed a needs-centred guideline for primary schools.
LINK
Biomimicry education is grounded in a set of natural design principles common to every known lifeform on Earth. These Life’s Principles (LPs) (cc Biomimicry 3.8), provide guidelines for emulating sustainable strategies that are field-tested over nearly four billion years of evolution. This study evaluates an exercise for teaching LPs to interdisciplinary students at three universities, Arizona State University (ASU) in Phoenix, Arizona (USA), College of Charleston (CofC) in Charleston, South Carolina (USA) and The Hague University of Applied Sciences (THUAS) in The Hague (The Netherlands) during the spring 2021 semester. Students researched examples of both biological organisms and human designs exhibiting the LPs. We gauged the effectiveness of the exercise through a common rubric and a survey to discover ways to improve instruction and student understanding. Increased student success was found to be directly linked to introducing the LPs with illustrative examples, assigning an active search for examples as part of the exercise, and utilizing direct assessment feedback loops. Requiring students to highlight the specific terms of the LP sub-principles in each example is a suggested improvement to the instructions and rubric. An iterative, face-to-face, discussion-based teaching and learning approach helps overcome minor misunderstandings. Reiterating the LPs throughout the semester with opportunities for application will highlight the potential for incorporating LPs into students’ future sustainable design process. Stevens LL, Fehler M, Bidwell D, Singhal A, Baumeister D. Building from the Bottom Up: A Closer Look into the Teaching and Learning of Life’s Principles in Biomimicry Design Thinking Courses. Biomimetics. 2022; 7(1):25. https://doi.org/10.3390/biomimetics7010025
Special relativity theory (SRT) has recently gained popularity as a first introduction to “modern” physics thinking in upper level secondary physics education. A central idea in SRT is the absolute speed of light, with light propagating with uniform speed relative to the reference frame of the observer. Previous research suggests that students, building on their prior understandings of light propagation and relative motion, develop misunderstandings of this idea. The available research provides little detail on the reasoning processes underlying these misunderstandings. We therefore studied secondary education students’ preinstructional reasoning about the speed of light in a qualitative study, probing students’ reasoning through both verbal reasoning and drawing. Event diagrams (EDs) were used as a representational tool to support student reasoning. Results show that students productively use EDs to reason with light propagation. In line with previous research, we found two alternative reference frames students could use for uniform light propagation. Most students show a flexibility in their use of reference frame: They not only evaluate light propagation in their preferred frame of reference, but also relative to other frames. Some students experienced conflict between an alternative reference frame and the speed of light and changed their reasoning because of that. This finding suggests promising directions for designing education.
LINK