Purpose: To facilitate the design of viable business models by proposing a novel business model design framework for viability. Design: A design science research method is adopted to develop a business model design framework for viability. The business model design framework for viability is demonstrated by using it to design a business model for an energy enterprise. The aforementioned framework is validated in theory by using expert opinion. Findings: It is difficult to design viable business models because of the changing market conditions, and competing interests of stakeholders in a business ecosystem setting. Although the literature on business models provides guidance on designing viable business models, the languages (business model ontologies) used to design business models largely ignore such guidelines. Therefore, we propose a business model design framework for viability to overcome the identified shortcomings. The theoretical validation of the business model design framework for viability indicates that it is able to successfully bridge the identified shortcomings, and it is able to facilitate the design of viable business models. Moreover, the validation of the framework in practice is currently underway. Originality / value: Several business model ontologies are used to conceptualise and evaluate business models. However, their rote application will not lead to viable business models, because they largely ignore vital design elements, such as design principles, configuration techniques, business rules, design choices, and assumptions. Therefore, we propose and validate a novel business model design framework for viability that overcomes the aforementioned shortcomings.
DOCUMENT
The main question in this PhD thesis is: How can Business Rules Management be configured and valued in organizations? A BRM problem space framework is proposed, existing of service systems, as a solution to the BRM problems. In total 94 vendor documents and approximately 32 hours of semi-structured interviews were analyzed. This analysis revealed nine individual service systems, in casu elicitation, design, verification, validation, deployment, execution, monitor, audit, and version. In the second part of this dissertation, BRM is positioned in relation to BPM (Business Process Management) by means of a literature study. An extension study was conducted: a qualitative study on a list of business rules formulated by a consulting organization based on the Committee of Sponsoring Organizations of the Treadway Commission risk framework. (from the summary of the Thesis p. 165)
DOCUMENT
De markt voor Business Process Management (BPM) software groeit razend snel. Voor 2010 wordt er een marktomvang voorspeld van tussen de 1 tot 6 miljard dollar, dit betekend dat deze markt sinds 2005 meer dan verdubbeld is. BPM krijgt ook in toenemende mate publiciteit in de markt echter dan gaat het veelal om wat BPM nu precies wel en niet is en niet over hoe het toegepast kan worden. Hetzelfde geldt voor BPM software, beter bekend als Business Process Management Systemen (BPMS). Het onderzoek beschreven in dit proefschrift focust op BPMS, het ontstaan, waar het naartoe gaat en wat er allemaal komt kijken bij de invoering en het gebruik ervan. De hoofdonderzoeksvraag in dit proefschrift is: Welke factoren en competenties bepalen het succes van de implementatie van Business Process Management Systemen in een specifieke situatie? Centraal in dit proefschrift staan de volgende onderzoeksvragen: 1. Wat zijn de succes factoren bij de implementatie van Business Process Management Systemen? 2. Welke competenties hebben stakeholders in een Business Process Management Systeem implementatie project nodig? 3. Hoe ziet een Business Process Management Systeem implementatie methodiek eruit welke rekening houdt met de omgevingsfactoren van een organisatie?
MULTIFILE
The BECEE initiative represents a transformative collaboration between four leading European HEIs—Hanze University of Applied Sciences (HUAS), Zurich University of Applied Sciences (ZHAW), South East Technological University (SETU), and Universiteti "Aleksandër Moisiu" Durrës (UAMD). Our consortium embodies the essence of BECEE and the EIT Knowledge Triangle Model because it also comprises of 4 industry partners (KPN, Eindhoven, The Netherlands, Innofuse, Zurich, Switzerland, Dungarvan Enterprise Centre, South East, Ireland, and Linda Laboratory, Durrës, Albania) bringing together partners from education, research, and business who are equally committed to collaborate on innovation action plans to fostering balanced collaborative entrepreneurship ecosystems in our respective regions. This consortium, therefore, is strategically designed to pool diverse strengths, creating a synergetic force for innovation and entrepreneurship that transcends the capabilities of any single organisation.
Promoting entrepreneurship is an enabler of smart, sustainable and inclusive growth and it is one objective EU regions have pursued since the EC included it into 2020 Strategy. Entrepreneurship development has economic and social benefits, since it is not only a driving force for job creation, competitiveness and growth; it also contributes to personal fulfillment and to achieve social objectives. That is why the EU encourages entrepreneurial initiatives and to unlock the growth potential of businesses and citizens. However, only a 37% of Europeans (Eurobarometer 2012) would like to be self-employed. The Entrepreneurship Action Plan adopted by the EC in 2013 to reignite Europe’s entrepreneurial spirit includes initiatives for educating young people on entrepreneurship. To ensure that EU economy remains globally competitive, young generations of Europeans need to be inspired to develop their entrepreneurial mindset. EU 2020 Action Plan argues that young people benefitting of a specialised entrepreneurial education are more likely to start-up a business and to better tackle challenges in their professional career and life in general. Hence, there is good reason to ensure better quality of entrepreneurial education. Most approaches in recent years have focused on improving the skills or competences youngsters should obtain only within the education system. However, an integrated approach is needed, where the school, their friends, family and the social environment, shall play each one a relevant role, contributing to generate a more adequate atmosphere to boost their entrepreneurial mindsets, intrapreneurial attitudes and innovation capacities. This project will identify and exchange – through a quadruple helix approach- good practices for creating friendlier entrepreneurial ecosystems and actions to boost entrepreneurship in young people mindsets. The good practices and lessons learnt will be transferred into Action Plans to be included in regional policies.
The consortium would like to contribute to structural reduction of post-harvest and food losses and food quality improvement in Kenyan avocado and dairy value chains via the application of technical solutions and tools as well as improved chain governance competences in those food chains. The consortium has four types of partners: 1. Universities (2 Kenyan, 4 Dutch), 2. Private sector actors in those chains, 3. Organisations supporting those chains, and 4. Associate partners which support category 1 to 3 partners through co-financing, advice and reflection. The FORQLAB project targets two areas in Kenya for both commodities, a relatively well-developed chain in the central highlands and a less-develop chain in Western-Kenya. The approach is business to business and the selected regions have great potential for uptake of successful chain innovations as outcome of research results. The results are scalable for other fresh and processed product chains via a living lab network approach. The project consists of 5 work packages (WPs): 1. Inventory , status quo and inception, 2. Applied research, 3. Dissemination of research outputs through living lab networks, 4. Translation of project output in curricula and trainings, and 5. Communication among partners and WPs. The applied research will be implemented in cooperation with all partners, whereby students of the consortium universities will conduct most of the field studies and all other partners support and interact depending on the WPs. The expected outcomes are: two knowledge exchange platforms (Living Labs) supported with hands on sustainable food waste reduction implementation plans (agenda strategy); overview and proposals for ready ICT and other tech solutions; communication and teaching materials for universities and TVETs; action perspectives; and knowledge transfer and uptake.