Infographic bij het eindrapport van de reviewstudie.
MULTIFILE
With campuses opening up and stimulating interactions among different campus users more and more, we aim to identify the characteristics of successful meeting places (locations) on campus. These can help practitioners such as campus managers and directors to further optimize their campus to facilitate unplanned or serendipitous meetings between academic staff and companies. A survey on three Dutch campuses, including questions on both services and locations, was analyzed both spatially and statistically using principal component (PC) and regression analysis. Four PCs were found for services (Relax, Network, Proximity and Availability) and three PCs were found for locations (Aesthetics, Cleaned and Indoor Environment). Personal characteristics as explanatory variables were not significant or only had very small effect sizes, indicating that a campus’ design does not need to be tailored to certain user groups but can be effective for all. The pattern of successful locations is discussed, including the variables in each PC. These PCs provide a framework for practitioners who want to improve their campus’ design to further facilitate unplanned meetings, thus contributing to cooperation between campus users, hopefully leading to further innovation.
This paper explores knowledge-based urban development related to higher education and campuses. It also provides an introduction to design thinking, which has been used as a user-friendly tool for fulfilling the ideals of urban campus development in the project ‘Live Baltic Campus– Campus Areas as Labs for Participative Urban Design’.The project aimed at developing campuses as innovation hubs where different stakeholders, residents as well as businesses, are being taken into account; rejecting the prevailing campus discourses. As a takeaway message, the result of the project can be summarised as a formulation of the core themes of urban campus development.
Making buildings smarter will save energy and make energy systems more flexible to address grid congestion. This is done by adding smart functionalities (such as machine learning and AI) to existing building management systems and by making full use of building data. Applied research and innovation on smart buildings is urgently needed to evaluate the best smart solutions for buildings applicable to different types of buildings across different contexts, and to assess their costs and benefits. Research on smart buildings, therefore, plays a large role in European, national and regional R&I agenda’s on energy, climate and digitalisation. Amsterdam University of Amsterdam (AUAS) has a growing research group on building energy management and smart buildings, supporting the sustainable transition of its own campus and the Amsterdam region. However, to date, AUAS has not been able to engage in international research projects in this area. Recently, AUAS became a partner in an European University Alliance (U!REKA European University), U!REKA comprises of six universities of applied sciences across Europe with its mission focusing on climate neutral communities and cities. Several partners with U!REKA are also conducting research on smart buildings and smart campuses, but, like AUAS, still in relative isolation. U!REKA will provide the collaboration framework for future joint research to be kick-started by the proposed SIA pilot project. In this research project, AUAS will cooperate with the Technical University Eindhoven, Metropolia University of Applied Sciences (Helsinki) and Politecnico de Lisboa (Lisbon) as consortium partners. Supporting partners are Frankfurt University of Applied Sciences, KTH Royal Institute of Technology (Stockholm) and TVVL (Dutch knowledge platform and association of professionals in the installation sector). The research is based on smart building case studies on the campuses of the project partners.